Toggle light / dark theme

Twice a day, Mars may briefly host water that could support life

Frost-covered regions present the best candidates for the future habitability of Mars and further astrobiological exploration, research into brines shows. Mars, once thought too cold and dry for liquid water, may briefly host salty brines twice a day during certain seasons. These fleeting bursts wouldn’t be enough to sustain humans, but they could have supported hardy life in Mars’ past—and may guide future missions searching for signs of it.

Due to extreme temperatures and the dryness of Mars, it’s thought to be impossible for liquid water to form on the planet’s surface, a critical precondition for habitability. The only hope of finding liquid water appears to be in the form of brines, which are liquids with high concentrations of salts that can freeze at much lower temperatures. But the question of whether brines can even form on Mars has yet to be answered.

Vincent Chevrier, an associate research professor at the University of Arkansas’ Center for Space and Planetary Sciences, has been studying that question for 20 years and now thinks he knows the answer: ‘yes they can.’

“They Bend All Limits”: Astronomers Confirm Quipu’s 1.3-Billion-Light-Year Width as Universe’s Largest Known Structure Ever Detected

IN A NUTSHELL 🌌 The Quipu superstructure is the largest known entity in the universe, spanning over 1.3 billion light-years. 🔭 Astronomers use X-ray galaxy clusters to map and analyze these massive cosmic formations. 📊 The size of superstructures like Quipu can distort critical cosmological measurements, affecting our understanding of the universe’s expansion. ⏳ Despite

Dusty structure explains near vanishing of faraway star

Stars die and vanish from sight all the time, but astronomers were puzzled when one that had been stable for more than a decade almost disappeared for eight months.

Between late 2024 and early 2025, one star in our galaxy, dubbed ASASSN-24fw, dimmed in brightness by about 97%, before brightening again. Since then, scientists have been swapping theories about what was behind this rare, exciting event.

Now, an international team led by scientists at The Ohio State University may have come up with an answer to the mystery. In a new study recently published in The Open Journal of Astrophysics, astronomers suggest that because the color of the star’s light remained unchanged during its dimming, the event wasn’t caused by the star evolving in some way, but by a large cloud of dust and gas around the star that occluded Earth’s view of it.

Brightest-ever fast radio burst allows researchers to identify its origin

An international team of astronomers has observed one of the brightest fast radio bursts (FRBs) ever detected—and pinpointed its location in a nearby galaxy (NGC 4141). FRB 20250316A has been nicknamed RBFLOAT, which stands for Radio Brightest FLash Of All Time. The finding and the discovery of the location surprised the team and revealed new insight into FRBs, which are one of astrophysics’ biggest mysteries.

Voyager missed it, but now we know Uranus has a fiery secret

For decades, scientists puzzled over why Uranus seemed colder than expected. Now, an international research team led by the University of Houston has solved the mystery: Uranus emits more heat than it gets from the Sun, meaning it still carries internal warmth from its ancient formation. This revelation rewrites what scientists know about the ice giant’s history, strengthens the case for NASA’s upcoming mission, and offers fresh insight into the forces shaping not only other planets, but also Earth’s future climate.

A new study led by University of Houston researchers, in collaboration with planetary scientists worldwide, suggests Uranus does have its own internal heat — an advance that not only informs NASA’s future missions but also deepens scientists’ understanding of planetary systems, including processes that influence Earth’s climate and atmospheric evolution.

The discovery resolves a long-standing scientific mystery about the giant planet, because observational analyses from Voyager 2 in 1986 didn’t suggest the presence of significant internal heat — contradicting scientists’ understanding of how giant planets form and evolve.

/* */