Toggle light / dark theme

According to my recursive universe theory, we need Primordial Consciousness to explain the beginning of the first Universe. Please take a look at this YouTube video clip!


Consciousness is one of those topics that makes everyone uncomfortable—scientists, philosophers, and just about anyone who dares to question the nature of reality. Why? Because, despite all our technological advancements and scientific breakthroughs, we still don’t have a clear idea of what consciousness actually is or where it comes from. It’s the elephant in the room, the mystery that science can’t seem to crack. We can map the brain and understand its functions, but that still doesn’t explain why we experience thoughts, feelings, or self-awareness.

Some argue that consciousness is nothing more than the byproduct of biological processes, a lucky accident of evolution. But what if that’s not the whole story? What if consciousness isn’t a mere side effect of neurons firing but something far more fundamental—something that’s intertwined with the fabric of the universe itself?

Dr. Adomas Valantina: “Mars is still the Red Planet. It’s just that our understanding of why Mars is red has been transformed.”


What can Mars’ red hue that’s been observed for thousands of years teach us about when water existed on its surface potentially millions, or even billions, of years ago? This is what a recent study published in Nature Communications hopes to address as an international team of researchers investigated the connection between Mars’ red color and water interactions in the Red Planet’s ancient past. This study has the potential to help researchers better understand the formation and evolution of Mars and whether life could have existed at some point in its history.

For the study, the researchers used a combination of data obtained from Mars orbiters and laboratory experiments to ascertain the iron oxide mineral that is responsible for Mars’ red color and what relation this has to past liquid water that might have existed on the planet’s surface. This study builds upon past research that concluded the mineral hematite was responsible for Mars’ red color, which is a mineral that forms in water-free environments. However, the researchers for this study discovered that ferrihydrite is responsible for Mars’ red color, which is a mineral that forms in cold, watery environments.

“Mars is still the Red Planet,” said Dr. Adomas Valantina, who is a postdoctoral fellow at Brown University and lead author of the study. “It’s just that our understanding of why Mars is red has been transformed. The major implication is that because ferrihydrite could only have formed when water was still present on the surface, Mars rusted earlier than we previously thought. Moreover, the ferrihydrite remains stable under present-day conditions on Mars.”

What can an extremely hot Neptune-sized exoplanet teach scientists about exoplanetary weather? This is what a recent study published Nature Astronomy hopes to address as an international team of researchers investigated the extreme weather patterns on the “ultra-hot Neptune” exoplanet, LTT 9,779 b, which is tidally locked to its star and orbits so close to its star that it’s causing unique cloud and weather patterns. This study has the potential to help scientists better understand the formation and evolution of ultra-hot exoplanets and how these worlds remain intact.

“This planet provides a unique laboratory to understand how clouds and the transport of heat interact in the atmospheres of highly irradiated worlds,” said Louis-Philippe Coulombe, who is a PhD student at the University of Montreal’s (UdeM) Trottier Institute for Research on Exoplanets (IREx) and lead author of the study.

Located approximately 262 light-years from Earth, LTT 9,779 b orbits its star in only 0.8 days, or just over 19 hours, meaning its tidally locked orbit results in dayside temperatures of just below 2,000 degrees Celsius (3,600 degrees Fahrenheit) while its nightside temperatures are just over 1,000 degrees Celsius (1,800 degrees Fahrenheit).

Present-day Mars is a barren and inhospitable planet, but it may have once had sandy beaches and tranquil ocean vistas. According to findings published on February 24 in the Proceedings of the National Academy of Sciences, the Red Planet may have remained a vacation-worthy destination for tens of millions of years—while also providing the proper conditions to support microbial life.

The evidence comes from data collected by China’s Zhurong Mars rover, which landed in the Utopia Planitia region of Mars in 2021. Unlike other rovers traversing the planet, Zhurong arrived with high-and low-frequency radar systems that allow it to conduct ground-penetrating scans of the Martian subsurface. After reviewing the rover’s data, an international team, including researchers at Penn State, believe that they have spotted layered structures with remarkable similarities to what can be found all over Earth.

“We’re finding places on Mars that used to look like ancient beaches and ancient river deltas,” Benjamin Cardenas, a Penn State assistant professor of geology and study co-author, said in an accompanying statement. “We found evidence for wind, waves, no shortage of sand—a proper, vacation-style beach.”

Scientists at Penn State have harnessed a unique property called incipient ferroelectricity to create a new type of computer memory that could revolutionize how electronic devices work, such as using much less energy and operating in extreme environments like outer space.

They published their work, which focuses on multifunctional two-dimensional field-effect transistors (FETs), in Nature Communications. FETs are advanced electronic devices that use ultra-thin layers of materials to control , offering multiple functions like switching, sensing or memory in a compact form.

They are ferroelectric-like, meaning the direction of their electric conduction can be reversed when an external electric field is applied to the system. FETs are essential in computing, since the ferroelectric-like property allows them to shift signals.

An international team has confirmed the discovery of a super-Earth orbiting in the habitable zone of a nearby sun-like star. The planet was originally detected two years ago by Oxford University scientist Dr. Michael Cretignier. This result, drawing on more than two decades of observations, opens a window to future studies of Earth-like exoplanets that may have conditions suitable for life.

The new planet, named HD 20,794D, has a mass six times that of Earth and orbits a star similar to our sun, located just 20 light years away. Its orbit places it within the habitable zone of the system, meaning it is at the right distance from its star to sustain liquid water on its surface, a key ingredient for life as we know it. The paper is published in the journal Astronomy & Astrophysics.

Dr. Cretignier first identified a candidate exoplanet signal in 2022, while analyzing archived data recorded by the HARPS (High Accuracy Radial Velocity Planet Searcher) spectrograph at the La Silla Observatory in Chile. This data analyzes the light absorbed and emitted by objects.

NASA has significantly lowered the risk of near-Earth asteroid 2024 YR4 as an impact threat to Earth for the foreseeable future. When first discovered, asteroid 2024 YR4 had a very small, but notable chance of impacting our planet in 2032. As observations of the asteroid continued to be submitted to the Minor Planet Center, experts at NASA Jet Propulsion Laboratory’s (JPL’s) Center for Near-Earth Object Studies were able to calculate more precise models of the asteroid’s trajectory and now have found there is no significant potential for this asteroid to impact our planet for the next century. The latest observations have further reduced the uncertainty of its future trajectory, and the range of possible locations the asteroid could be on Dec. 22, 2032, has moved farther away from the Earth.

There still remains a very small chance for asteroid 2024 YR4 to impact the Moon on Dec. 22, 2032. That probability is currently 1.7%.

NASA will continue to observe asteroid 2024 YR4 with observatories funded by its Planetary Defense Coordination Office, and NASA’s James Webb Space Telescope will observe the asteroid in March to further gain insights about its size for scientific purposes.

SAN FRANCISCO – BAE Systems won a $230.6 million NASA contract to deliver spacecraft for the National Oceanic and Atmospheric Agency’s Lagrange 1 Series space weather project.

Under the firm-fixed-price award, announced Feb. 21, BAE Systems Space & Mission Systems, formerly Ball Aerospace, will develop Lagrange 1 Series spacecraft, integrate instruments, and support flight and mission operations. Contract-related work, scheduled to begin this month, will be performed in Boulder, Colorado, through January 2034.

The Lagrange 1 Series, part of NOAA’s Space Weather Next program, is designed to provide continuity of coronal imagery and upstream solar wind measurements, with spacecraft expected to launch in 2029 and 2032. BAE Systems also is building the Space Weather Follow On Lagrange 1 mission set to fly no earlier than September on NASA’s Interstellar Mapping and Acceleration Probe.