БЛОГ

Archive for the ‘space’ category: Page 654

Sep 13, 2011

Economics and Survival: An In-space 2-for-1 Bargain

Posted by in categories: economics, existential risks, habitats, space, sustainability

There is growing recognition that the Moon is the logical next step for sustainably opening space to human settlement. It is now confirmed that both lunar poles contain appreciable quantities of ice containing water and also carbon and nitrogen containing compounds. Since the Moon is always only a 3-day trip away, it easily beats low-gravity asteroids as the most economic place to mine water ice. Similarly, since the Moon has only a 3-second roundtrip communications delay, teleoperated robots could mine and process the lunar ice at a fraction of what human miners would cost. That ice, brought back to Low Earth Orbit (LEO) could establish a new space economy including on-orbit refueling, boosting large communications satellites to GEO, sending tourists around or even to the Moon, and facilitating NASAs Beyond Earth Orbit activities. So the Moon is a great place to develop economic in-space resources.

But, what does all of this do with survival?

Amongst those people who understand extinction risks to humanity, it is generally recognized that an off-Earth, self-sufficient colony would go a very long ways to ensuring the survival of humanity as a species. An orbiting colony would not be a good choice because, if the Earth’s biosphere were contaminated with an ecophage, the Earth itself would not anymore be a source of supplies, and Earth orbit contains no resources except for sunlight. Mars, an asteroid, or a distant moon could be a location for an off-Earth colony, but all of these would be considerably more expensive to establish than on the Moon. For those of us who think it prudent that we should purchase “insurance” against the extinction of humanity sooner rather than later, the least expensive location makes the most sense. So the Moon is a great place to establish a colony for the purpose of survival.

Interesting, so the Moon is the best place for both economics and survival. Perhaps the two could be combined into a single program. But, in the Age of Austerity, it is unlikely that our governments are going to fund a large new space program. So how can this be done economically?

Continue reading “Economics and Survival: An In-space 2-for-1 Bargain” »

Sep 9, 2011

365 days of astronomy podcast

Posted by in category: space

Hi,

My esteemed colleague the Ordinary Guy from the Brains Matter podcast and I recorded a 365 days podcast for 8 September 2011 - talking about saving the world through science education and research, as well considering issues of cheap telescopes and the George Foreman grill.

The 365 days of astronomy podcast is a not-for-profit user driven science communication initiative — in its third year now, but it may be on its last legs. If you have a burning desire to create 10 minutes of audio on a space science-related podcast, this may be your last chance.

And a big woo-hoo to the Lifeboat Foundation for a whopping $250 donation to keep the 365 days podcast going — at least for the rest of 2011.

Continue reading “365 days of astronomy podcast” »

Sep 3, 2011

Space Junk! Environmental concerns!

Posted by in categories: space, sustainability

Dear Team and readers,

I am particularly concerned about the damage we cause to the environment starting with junk in space, earth, and the ocean.

As a participant of Singularity University ’11 at NASA Ames, I am very happy to share with you my video about space debris:

Continue reading “Space Junk! Environmental concerns!” »

Jun 5, 2011

Our History Shapes the Future

Posted by in categories: counterterrorism, futurism, geopolitics, human trajectories, military, nanotechnology, philosophy, policy, space

Abstract

American history teachers praise the educational value of Billy Joel’s 1980s song ‘We Didn’t Start the Fire’. His song is a homage to the 40 years of historical headlines since his birth in 1949.

Which of Joel’s headlines will be considered the most important a millennium from now?

This column discusses five of the most important, and tries to make the case that three of them will become irrelevant, while one will be remembered for as long as the human race exists (one is uncertain). The five contenders are:

Continue reading “Our History Shapes the Future” »

Feb 9, 2011

Mixed Messages: Tantrums of an Angry Sun

Posted by in categories: business, events, geopolitics, particle physics, policy, space

When examining the delicate balance that life on Earth hangs within, it is impossible not to consider the ongoing love/hate connection between our parent star, the sun, and our uniquely terraqueous home planet.

On one hand, Earth is situated so perfectly, so ideally, inside the sun’s habitable zone, that it is impossible not to esteem our parent star with a sense of ongoing gratitude. It is, after all, the onslaught of spectral rain, the sun’s seemingly limitless output of charged particles, which provide the initial spark to all terrestrial life.

Yet on another hand, during those brief moments of solar upheaval, when highly energetic Earth-directed ejecta threaten with destruction our precipitously perched technological infrastructure, one cannot help but eye with caution the potentially calamitous distance of only 93 million miles that our entire human population resides from this unpredictable stellar inferno.

Continue reading “Mixed Messages: Tantrums of an Angry Sun” »

Aug 17, 2010

More on a Space Elevator in <7

Posted by in category: space

I gave the following speech at the Space Elevator Conference.

——

“Waste anything but time.”

—Motto of the NASA Apollo missions

Continue reading “More on a Space Elevator in <7” »

Jun 5, 2010

Space Education

Posted by in categories: education, space

Kepler Space University was a participant in the ISDC-2010 at Chicago, May 27–30, 2010 with a PhD Commencement and nine presentations.

Read KSC Scores at ISDC.

Bob Krone, Ph.D., Provost
www.keplerspaceuniversity.org

May 31, 2010

A Space Elevator in 7

Posted by in categories: nanotechnology, space

I am a former Microsoft programmer who wrote a book (for a general audience) about the future of software called After the Software Wars. Eric Klien has invited me to post on this blog (Software and the Singularity, AI and Driverless cars) Here are the sections on the Space Elevator. I hope you find these pages food for thought and I appreciate any feedback.


A Space Elevator in 7

Midnight, July 20, 1969; a chiaroscuro of harsh contrasts appears on the television screen. One of the shadows moves. It is the leg of astronaut Edwin Aldrin, photographed by Neil Armstrong. Men are walking on the moon. We watch spellbound. The earth watches. Seven hundred million people are riveted to their radios and television screens on that July night in 1969. What can you do with the moon? No one knew. Still, a feeling in the gut told us that this was the greatest moment in the history of life. We were leaving the planet. Our feet had stirred the dust of an alien world.

—Robert Jastrow, Journey to the Stars

Management is doing things right, Leadership is doing the right things!

Continue reading “A Space Elevator in 7” »

Apr 14, 2010

Technology Readiness Levels for Non-rocket Space Launch

Posted by in categories: asteroid/comet impacts, engineering, habitats, human trajectories, space

An obvious next step in the effort to dramatically lower the cost of access to low Earth orbit is to explore non-rocket options. A wide variety of ideas have been proposed, but it’s difficult to meaningfully compare them and to get a sense of what’s actually on the technology horizon. The best way to quantitatively assess these technologies is by using Technology Readiness Levels (TRLs). TRLs are used by NASA, the United States military, and many other agencies and companies worldwide. Typically there are nine levels, ranging from speculations on basic principles to full flight-tested status.

The system NASA uses can be summed up as follows:

TRL 1 Basic principles observed and reported
TRL 2 Technology concept and/or application formulated
TRL 3 Analytical and experimental critical function and/or characteristic proof-of concept
TRL 4 Component and/or breadboard validation in laboratory environment
TRL 5 Component and/or breadboard validation in relevant environment
TRL 6 System/subsystem model or prototype demonstration in a relevant environment (ground or space)
TRL 7 System prototype demonstration in a space environment
TRL 8 Actual system completed and “flight qualified” through test and demonstration (ground or space)
TRL 9 Actual system “flight proven” through successful mission operations.

Progress towards achieving a non-rocket space launch will be facilitated by popular understanding of each of these proposed technologies and their readiness level. This can serve to coordinate more work into those methods that are the most promising. I think it is important to distinguish between options with acceleration levels within the range human safety and those that would be useful only for cargo. Below I have listed some non-rocket space launch methods and my assessment of their technology readiness levels.

Continue reading “Technology Readiness Levels for Non-rocket Space Launch” »

Dec 30, 2009

Ark-starship – too early or too late?

Posted by in categories: existential risks, lifeboat, space

It is interesting to note that the technical possibility to send interstellar Ark appeared in 1960th, and is based on the concept of “Blust-ship” of Ulam. This blast-ship uses the energy of nuclear explosions to move forward. Detailed calculations were carried out under the project “Orion”. http://en.wikipedia.org/wiki/Project_Orion_(nuclear_propulsion) In 1968 Dyson published an article “Interstellar Transport”, which shows the upper and lower bounds of the projects. In conservative (ie not imply any technical achievements) valuation it would cost 1 U.S. GDP (600 billion U.S. dollars at the time of writing) to launch the spaceship with mass of 40 million tonnes (of which 5 million tons of payload), and its time of flight to Alpha Centauri would be 1200 years. In a more advanced version the price is 0.1 U.S. GDP, the flight time is 120 years and starting weight 150 000 tons (of which 50 000 tons of payload). In principle, using a two-tier scheme, more advanced thermonuclear bombs and reflectors the flying time to the nearest star can reduce to 40 years.
Of course, the crew of the spaceship is doomed to extinction if they do not find a habitable and fit for human planet in the nearest star system. Another option is that it will colonize uninhabited planet. In 1980, R. Freitas proposed a lunar exploration using self-replicating factory, the original weight of 100 tons, but to control that requires artificial intelligence. “Advanced Automation for Space Missions” http://www.islandone.org/MMSG/aasm/ Artificial intelligence yet not exist, but the management of such a factory could be implemented by people. The main question is how much technology and equipment should be enough to throw at the moonlike uninhabited planet, so that people could build on it completely self-sustaining and growing civilization. It is about creating something like inhabited von Neumann probe. Modern self-sustaining state includes at least a few million people (like Israel), with hundreds of tons of equipment on each person, mainly in the form of houses, roads. Weight of machines is much smaller. This gives us the upper boundary of the able to replicate human colony in the 1 billion tons. The lower estimate is that there would be about 100 people, each of which accounts for approximately 100 tons (mainly food and shelter), ie 10 000 tons of mass. A realistic assessment should be somewhere in between, and probably in the tens of millions of tons. All this under the assumption that no miraculous nanotechnology is not yet open.
The advantage of a spaceship as Ark is that it is non-specific reaction to a host of different threats with indeterminate probabilities. If you have some specific threat (the asteroid, the epidemic), then there is better to spend money on its removal.
Thus, if such a decision in the 1960th years were taken, now such a ship could be on the road.
But if we ignore the technical side of the issue, there are several trade-offs on strategies for creating such a spaceship.
1. The sooner such a project is started, the lesser technically advanced it would be, the lesser would be its chances of success and higher would be cost. But if it will be initiated later, the greater would be chances that it will not be complete until global catastrophe.
2. The later the project starts, the greater are the chance that it will take “diseases” of mother civilization with it (e.g. ability to create dangerous viruses ).
3. The project to create a spaceship could lead to the development of technologies that threaten civilization itself. Blast-ship used as fuel hundreds of thousands of hydrogen bombs. Therefore, it can either be used as a weapon, or other party may be afraid of it and respond. In addition, the spaceship can turn around and hit the Earth, as star-hammer — or there maybe fear of it. During construction of the spaceship could happen man-made accidents with enormous consequences, equal as maximum to detonation of all bombs on board. If the project is implementing by one of the countries in time of war, other countries could try to shoot down the spaceship when it launched.
4. The spaceship is a means of protection against Doomsday machine as strategic response in Khan style. Therefore, the creators of such a Doomsday machine can perceive the Ark as a threat to their power.
5. Should we implement a more expensive project, or a few cheaper projects?
6. Is it sufficient to limit the colonization to the Moon, Mars, Jupiter’s moons or objects in the Kuiper belt? At least it can be fallback position at which you can check the technology of autonomous colonies.
7. The sooner the spaceship starts, the less we know about exoplanets. How far and how fast the Ark should fly in order to be in relative safety?
8. Could the spaceship hide itself so that the Earth did not know where it is, and should it do that? Should the spaceship communicate with Earth? Or there is a risk of attack of a hostile AI in this case?
9. Would not the creation of such projects exacerbate the arms race or lead to premature depletion of resources and other undesirable outcomes? Creating of pure hydrogen bombs would simplify the creation of such a spaceship, or at least reduce its costs. But at the same time it would increase global risks, because nuclear non-proliferation will suffer complete failure.
10. Will the Earth in the future compete with its independent colonies or will this lead to Star Wars?
11. If the ship goes off slowly enough, is it possible to destroy it from Earth, by self-propelling missile or with radiation beam?
12. Is this mission a real chance for survival of the mankind? Flown away are likely to be killed, because the chance of success of the mission is no more than 10 per cent. Remaining on the Earth may start to behave more risky, in logic: “Well, if we have protection against global risks, now we can start risky experiments.” As a result of the project total probability of survival decreases.
13. What are the chances that its computer network of the Ark will download the virus, if it will communicate with Earth? And if not, it will reduce the chances of success. It is possible competition for nearby stars, and faster machines would win it. Eventually there are not many nearby stars at distance of about 5 light years — Alpha Centauri, the Barnard star, and the competition can begin for them. It is also possible the existence of dark lonely planets or large asteroids without host-stars. Their density in the surrounding space should be 10 times greater than the density of stars, but to find them is extremely difficult. Also if nearest stars have not any planets or moons it would be a problem. Some stars, including Barnard, are inclined to extreme stellar flares, which could kill the expedition.
14. The spaceship will not protect people from hostile AI that finds a way to catch up. Also in case of war starships may be prestigious, and easily vulnerable targets — unmanned rocket will always be faster than a spaceship. If arks are sent to several nearby stars, it does not ensure their secrecy, as the destination will be known in advance. Phase transition of the vacuum, the explosion of the Sun or Jupiter or other extreme event can also destroy the spaceship. See e.g. A.Bolonkin “Artificial Explosion of Sun. AB-Criterion for Solar Detonation” http://www.scribd.com/doc/24541542/Artificial-Explosion-of-S…Detonation
15. However, the spaceship is too expensive protection from many other risks that do not require such far removal. People could hide from almost any pandemic in the well-isolated islands in the ocean. People can hide on the Moon from gray goo, collision with asteroid, supervolcano, irreversible global warming. The ark-spaceship will carry with it problems of genetic degradation, propensity for violence and self-destruction, as well as problems associated with limited human outlook and cognitive biases. Spaceship would only burden the problem of resource depletion, as well as of wars and of the arms race. Thus, the set of global risks from which the spaceship is the best protection, is quite narrow.
16. And most importantly: does it make sense now to begin this project? Anyway, there is no time to finish it before become real new risks and new ways to create spaceships using nanotech.
Of course it easy to envision nano and AI based Ark – it would be small as grain of sand, carry only one human egg or even DNA information, and could self-replicate. The main problem with it is that it could be created only ARTER the most dangerous period of human existence, which is the period just before Singularity.