Toggle light / dark theme

Made famous in 1995 by NASA’s Hubble Space Telescope, the Pillars of Creation in the heart of the Eagle Nebula have captured imaginations worldwide with their arresting, ethereal beauty.

Now, NASA has released a new 3D visualization of these towering celestial structures using data from NASA’s Hubble and James Webb space telescopes. This is the most comprehensive and detailed multiwavelength movie yet of these star-birthing clouds.

“By flying past and amongst the pillars, viewers experience their three-dimensional structure and see how they look different in the Hubble visible-light view versus the Webb infrared-light view,” explained principal visualization scientist Frank Summers of the Space Telescope Science Institute (STScI) in Baltimore, who led the movie development team for NASA’s Universe of Learning.

Based on our experiments, the ‘safe’ sampling depth for amino acids on Europa is almost 8 inches (around 20 centimeters) at high latitudes of the trailing hemisphere (hemisphere opposite to the direction of Europa’s motion around Jupiter) in the area where the surface hasn’t been disturbed much by…


How deep will future landers to Jupiter’s moon, Europa, and Saturn’s moon, Enceladus have to dig to find organic molecules aka the building blocks of life? This is what a recent study published in Astrobiology hopes to address as an international team of researchers investigated whether near-surface organic molecules on Europa and Enceladus could survive the intense solar and cosmic radiation since neither moon has a magnetic field like the Earth to shield it. This study holds the potential to help scientists better understand the conditions for finding life beyond Earth and the methods for finding that life, as well.

Image of Jupiter’s moon, Europa, obtained by NASA’s Juno spacecraft in September 2022. (Credit: NASA/JPL-Caltech/SwRI/MSSS Image processing: Kevin M. Gill CC BY 3.0)

Image of plumes emanating from the south pole of Enceladus obtained by NASA’s Cassini spacecraft. (Credit: NASA/JPL/Space Science Institute)

For the first time, a phenomenon astronomers have long hoped to directly image has been captured by NASA’s James Webb Space Telescope’s Near-Infrared Camera (NIRCam). In this stunning image of the Serpens Nebula, the discovery lies in the northern area (seen at the upper left) of this young, nearby star-forming region.

Astronomers found an intriguing group of protostellar outflows, formed when jets of gas spewing from newborn stars collide with nearby gas and dust at high speeds. Typically these objects have varied orientations within one region. Here, however, they are slanted in the same direction, to the same degree, like sleet pouring down during a storm.

The discovery of these aligned objects, made possible due to Webb’s exquisite spatial resolution and sensitivity in near-infrared wavelengths, is providing information into the fundamentals of how stars are born.

A newly discovered neutron star, found by an international team using the ASKAP radio telescope, spins every 54 minutes, making it the slowest of its kind.

This discovery could alter scientific theories about neutron stars and white dwarfs, emphasizing the need for more research to understand their emission properties and evolutionary paths.

Astronomers have detected what they believe to be a neutron star spinning at an unprecedentedly slow rate — slower than any of the more than 3,000 radio-emitting neutron stars measured to date.