Toggle light / dark theme

Google claims its latest quantum algorithm can outperform supercomputers on a real-world task

Researchers from Google Quantum AI report that their quantum processor, Willow, ran an algorithm for a quantum computer that solved a complex physics problem thousands of times faster than the world’s most powerful classical supercomputers. If verified, this would be one of the first demonstrations of practical quantum advantage, in which a quantum computer solves a real-world problem faster and more accurately than a classical computer.

In a new paper published in the journal Nature, the researchers provided details on how their algorithm, called Quantum Echoes, measured the complex behavior of particles in highly entangled . These are systems in which multiple particles are linked so that they share the same fate even when physically separated. If you measure the property of one particle, you instantly know something about the others. This linkage makes the overall system so complex that it is difficult to model on ordinary computers.

The Quantum Echoes algorithm uses a concept called an Out-of-Time-Order Correlator (OTOC), which measures how quickly information spreads and scrambles in a quantum system. The researchers chose this specific measurement because, as they state in the paper, “OTOCs have quantum interference effects that endow them with a high sensitivity to details of the quantum dynamics and, for OTOC, also high levels of classical simulation complexity. As such, OTOCs are viable candidates for realizing practical quantum advantage.”

Quantum simulations that once needed supercomputers now run on laptops

UB physicists have upgraded an old quantum shortcut, allowing ordinary laptops to solve problems that once needed supercomputers. A team at the University at Buffalo has made it possible to simulate complex quantum systems without needing a supercomputer. By expanding the truncated Wigner approximation, they’ve created an accessible, efficient way to model real-world quantum behavior. Their method translates dense equations into a ready-to-use format that runs on ordinary computers. It could transform how physicists explore quantum phenomena.

Picture diving deep into the quantum realm, where unimaginably small particles can exist and interact in more than a trillion possible ways at the same time.

It’s as complex as it sounds. To understand these mind-bending systems and their countless configurations, physicists usually turn to powerful supercomputers or artificial intelligence for help.

Quantum crystals offer a blueprint for the future of computing and chemistry

Imagine industrial processes that make materials or chemical compounds faster, cheaper, and with fewer steps than ever before. Imagine processing information in your laptop in seconds instead of minutes or a supercomputer that learns and adapts as efficiently as the human brain. These possibilities all hinge on the same thing: how electrons interact in matter.

A team of Auburn University scientists has now designed a new class of materials that gives scientists unprecedented control over these tiny particles. Their study, published in ACS Materials Letters, introduces the tunable coupling between isolated-metal molecular complexes, known as solvated electron precursors, where electrons aren’t locked to atoms but instead float freely in open spaces.

From their key role in energy transfer, bonding, and conductivity, electrons are the lifeblood of chemical synthesis and modern technology. In , electrons drive redox reactions, enable bond formation, and are critical in catalysis. In technological applications, manipulating the flow and interactions between electrons determines the operation of electronic devices, AI algorithms, photovoltaic applications, and even . In most materials, electrons are bound tightly to atoms, which limits how they can be used. But in electrides, electrons roam freely, creating entirely new possibilities.

Brownstone Research

Super AI is coming soon.


This is your shot to “partner” with Elon Musk in Project Colossus, the supercomputer that Jeff believes will power the next generation of AI.

Jeff is about to show you how you could take a stake in Elon’s private company starting with as little as $500…

Without having connections in Silicon Valley… Without having to be an accredited investor… And without having to be rich.

Supercomputer modeling unlocks longstanding mystery of subducted oceanic slabs

An international research collaboration has harnessed supercomputing power to better understand how massive slabs of ancient ocean floors are shaped as they sink hundreds of kilometers below Earth’s surface.

Sophisticated computer models developed by researchers in the UK, Switzerland and the U.S. have cast new light on the complex physical interactions which govern the sliding and sinking of the ancient ocean floor, also referred to as subducted slabs, through Earth’s mantle, a process known as subduction.

Researchers from the University of Glasgow led the study. Their paper, “The Role of the Overriding Plate and Mantle Viscosity Structure on Deep Slab Morphology,” is published in Geochemistry, Geophysics, Geosystems.

Could dark energy change over time? Supercomputer simulations challenge ΛCDM assumption

Since the early 20th century, scientists have gathered compelling evidence that the universe is expanding at an accelerating rate. This acceleration is attributed to what is known as dark energy—a fundamental property of spacetime that has a repulsive effect on galaxies.

For decades, the leading cosmological model, known as the Lambda Cold Dark Matter (ΛCDM), has assumed that is a constant entity, unchanging throughout cosmic time. While this simple assumption has served as the bedrock of modern cosmology, it has left a fundamental question unanswered: what if dark energy is not constant, but instead a time-varying property of the universe?

Recent observations have provided some of the first hints that the above-mentioned assumption may not be correct. The Dark Energy Spectroscopic Instrument (DESI), a sophisticated experiment for conducting astronomical surveys of distant galaxies, has produced data suggesting a preference for a dynamic dark energy (DDE) component.

Extreme pressure pushes honeycomb crystal toward quantum spin liquid, hinting at new qubit designs

The future of computing lies in the surprising world of quantum physics, where the rules are much different from the ones that power today’s devices. Quantum computers promise to tackle problems too complex for even the fastest supercomputers running on silicon chips. To make this vision real, scientists around the world are searching for new quantum materials with unusual, almost otherworldly properties.

One of the more intriguing candidates is called a quantum spin liquid—a state of matter where electron spins never settle down, even at the coldest temperatures in the universe. To date, however, preparing such a quantum state in a lab has proven stubbornly elusive. In a collaborative project with multiple institutions, scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory now report coming tantalizingly closer.

As explained by Argonne Senior Physicist and Group Leader Daniel Haskel, in these materials, it’s not atoms that stay fluid as in an ordinary liquid, but the tiny magnetic orientations—or spins—of electrons. Each spin wants to “get along” with its neighbors by aligning in a way that keeps everyone content. But when the spins are pushed closer together under pressure, satisfying every neighbor becomes impossible.

Simulations show Saturn’s moon Enceladus shoots less ice into space than previous estimates

In the 17th century, astronomers Christiaan Huygens and Giovanni Cassini trained their telescopes on Saturn and uncovered a startling truth: the planet’s luminous bands were not solid appendages, but vast, separate rings composed of countless nested arcs.

Centuries later, NASA’s Cassini–Huygens (Cassini) probe carried the exploration of Saturn even further. Beginning in 2005, it sent back a stream of spectacular images that transformed scientists’ understanding of the system. Among its most dramatic revelations were the towering geysers on Saturn’s icy moon Enceladus, which blasted debris into space and left behind a faint sub-ring encircling the planet.

New supercomputer simulations from the Texas Advanced Computing Center (TACC) based on the Cassini space probe’s data have found improved estimates of ice mass Enceladus is losing to space. These findings help with understanding and future robotic exploration of what’s below the surface of the icy moon, which might harbor life.

/* */