Toggle light / dark theme

On-demand Lewis base formation strategy boosts efficiency and stability of perovskite solar cells

Solar cells based on perovskites, materials with a characteristic crystal structure first unveiled in the mineral calcium titanate (CaTiO3), have emerged as a promising alternative to conventional silicon-based photovoltaics. A key advantage of these materials is that they could yield high power conversion efficiencies (PCEs), yet their production costs could be lower.

Perovskite films can exist in different structural forms, also referred to as phases. One is the so-called α-phase (i.e., a photoactive black phase), which is the most desirable phase for the efficient absorption of light and the transport of charge carriers. The δ-phase, on the other hand, is an intermediate phase characterized by a different atom arrangement and reduced photoactivity.

Researchers at the University of Toledo, Northwestern University, Cornell University and other institutes recently introduced a new strategy to control the crystallization process in -based , stabilizing the δ-phase while facilitating their transition to the α-phase. Their proposed approach, outlined in a paper in Nature Energy, enables the formation of Lewis bases on perovskites on demand to optimize crystallization, which can enhance the efficiency and stability of solar cells.

AI-powered advances unlock copper-zeolite catalysts for combating nitrogen oxide emissions

Increasingly stricter regulations on emissions from lean-burn engines, such as the Euro 7 standard, are approaching. This requires the development of catalytic materials that can reduce the toxic nitrogen oxides efficiently at low temperatures. Researchers at the Department of Physics at Chalmers University of Technology, together with industrial partner Umicore, now present a study showing how machine learning could help engines run cleaner.

Catalytic converters reduce the amount of toxic pollutants emitted into the air from a vehicle’s exhaust system. Stricter regulations on emissions standards within the coming years, such as the European Union’s proposed Euro 7, aim at further reducing air pollution from vehicles. Therefore, improved catalysts are needed to limit the emissions of harmful pollutants.

The main technology of selective catalytic reduction of uses ammonia as a reducing agent. Thus, the catalytic material should promote the formation of a nitrogen–nitrogen bond between nitrogen oxides and ammonia in an oxygen-rich environment and prevent unwanted reactions, which include the oxidation of ammonia to even more nitrogen oxides or nitrous oxide.

How can we optimize solid-state batteries? Try asking AI

Scientists are racing against time to try and create revolutionary, sustainable energy sources (such as solid-state batteries) to combat climate change. However, this race is more like a marathon, as conventional approaches are trial-and-error in nature, typically focusing on testing individual materials and set pathways one by one.

To get us to the finish line faster, researchers at Tohoku University developed a data-driven AI framework that points out potential solid-state electrolyte (SSE) candidates that could be “the one” to create the ideal sustainable energy solution.

This model does not only select optimal candidates, but can also predict how the reaction will occur and why this candidate is a good choice—providing interesting insights into potential mechanisms and giving researchers a huge head start without even stepping foot into the lab.

Inspired by laminate: ‘Three-ply’ microstructure gives perovskite solar cells a powerful efficiency lift

A collaborative research team from the Hong Kong University of Science and Technology (HKUST) and the Hong Kong Polytechnic University (PolyU) has developed an innovative laminated interface microstructure that enhances the stability and photoelectric conversion efficiency of inverted perovskite solar cells. The research is published in the journal Nature Synthesis.

Perovskite solar cells have considerable potential to replace traditional silicon solar cells in various applications, including grid electricity, portable power sources, and space photovoltaics. This is due to their unique advantages, such as , low cost, and aesthetic appeal.

The basic structures of are classified into two types: standard and inverted. The inverted structure demonstrates better application prospects because the electronic materials used in each layer are more stable compared to those in the standard configuration.

Full Keynote: Tesla Semi Update! Megacharger Network, New Battery, e-PTO, Production, & More

Tesla is ramping up production of its Semi trucks to 50,000 units annually by 2026, while enhancing performance, charging infrastructure, and electrification solutions to support the transition from diesel ## ## Questions to inspire discussion ## Production and Delivery.

🏭 Q: When will Tesla Semi production and deliveries begin? A: Tesla Semi customer deliveries will start in 2026, with production ramping throughout the year to reach a goal of 50,000 units/year at the Nevada plant.

🚚 Q: What are the key features of the new Tesla Semi? A: The Tesla Semi offers 500 mile long range and 300 mile standard range options, with improved mirror design, better sight lines, enhanced aerodynamics, and drop glass for easier driver interaction. Technology and Efficiency.

🔋 Q: How does the new HP battery improve the Tesla Semi? A: The new HP battery is cheaper to manufacture, maintains the same range with less battery energy, and achieves over 7% efficiency improvements, creating a positive feedback loop for cost and weight reduction.

⚡ Q: What is the e-PTO feature in the Tesla Semi? A: The electric power takeoff (EPTO) enables support for longer combinations, more trailer equipment, and helps electrify additional pieces of equipment, facilitating broader industry transition to electric solutions. Charging Infrastructure.

🔌 Q: What charging solutions is Tesla developing for the Semi? A: Tesla is building a publicly available charging network with 46 sites along truck routes and in major industrial areas, including stations at truck stops, to ensure low-cost, reliable, and available charging for every semi.

Microplastics Persist in Drinking Water Despite Treatment Plant Advances

Tiny pieces of plastic are an increasingly big problem. Known as microplastics, they originate from clothing, kitchen utensils, personal care products, and countless other everyday objects. Their durability makes them persistent in the environment – including in human bodies.

Not only are many people on Earth already contaminated by microplastics, but we’re also still being exposed every day, as there is minimal regulation of these insidious specks.

According to a new literature review, a significant portion of our microplastic exposure may come from drinking water, as wastewater treatment plants are still not effectively removing microplastics.

Precision-engineered surface can enhance silicon solar cell performance

Converting sunlight into electricity is the task of photovoltaic solar cells, but nearly half the light that reaches a flat silicon solar cell surface is lost to reflection. While traditional antireflective coatings help, they only work within a narrow range of light frequency and incidence angles. A new study may have overcome this limit.

As reported in Advanced Photonics Nexus, researchers have proposed a new type of antireflective coating using a single, ultrathin layer of polycrystalline silicon nanostructures (a.k.a. a metasurface). Achieving minimal reflection across certain wavelengths and angles, the metasurface was reportedly developed by combining forward and inverse design techniques, enhanced by (AI).

The result is a coating that sharply reduces reflection across a wide range of wavelengths and angles, setting a new benchmark for performance with minimal material complexity.

Assessing the potential of hydrogen and carbon dioxide networks for the future of European energy systems

Over the past decades, many countries worldwide have been trying to gradually transform their energy systems, with the aim of reducing carbon emissions and mitigating the adverse effects of climate change. Hydrogen and carbon dioxide (CO2) transport networks, infrastructures designed to transport hydrogen gas and captured CO2, could support the shift towards climate-neutral energy systems.

Researchers at Technical University Berlin carried out a study aimed at better understanding the extent to which hydrogen and CO2 could contribute to the future de-carbonization of the European energy system. Their paper, published in Nature Energy, suggests that both these types of networks could play a key role in establishing a sustainable and clean European energy system.

“In our view, we are envisioning a climate-friendly economy which relies as little as possible on and respects socio-economic considerations,” Fabian Hofmann, first author of the paper, told Tech Xplore.