Toggle light / dark theme

A collaborative effort has installed electronic “brains” on solar-powered robots that are 100 to 250 micrometers in size – smaller than an ant’s head – so that they can walk autonomously without being externally controlled.

Cornell researchers installed electronic “brains” on solar-powered robots that are 100 to 250 micrometers in size, so the tiny bots can walk autonomously without being externally controlled. Noël Heaney/Cornell University

While Cornell researchers and others have previously developed microscopic machines that can crawl, swim, walk and fold themselves up, there were always “strings” attached; to generate motion, wires were used to provide electrical current or laser beams had to be focused directly onto specific locations on the robots.

A solar-powered motorhome, shaped like a huge elongated teardrop, silently rolled into Madrid on Friday as part of a month-long journey from the Netherlands to southern Spain to highlight more sustainable modes of transport.

Engineering students at the Technical University of Eindhoven in the Netherlands created the blue and white vehicle, named Stella Vita – Latin for “star” and “life” – to inspire car makers and politicians to accelerate the transition toward green energy.

Expansive solar panels on the roof and on lateral wings that unfold when the vehicle stops allow the self-sustaining house on wheels, or SHOW, to travel up to 740 km (460 miles) on a sunny day, while the battery can also power a fridge, coffee maker and laptop in the two-person cabin.

It can generate enough energy to power 1.5 million households a year.

The first of China’s wind and solar energy projects being built in the desert areas is now connected to the electricity grid and has begun generating power, media outlet ChinaDaily.

With the planet needing to reduce carbon emissions, countries are now innovating in generating greener energy. Interesting Engineering reported earlier this year how Switzerland installed 5,000 solar panels on the highest dam in Europe. On its part, China is looking to convert the arid regions of its geography into power generation zones.

An artificial photosynthesis system that combines semiconducting nanoparticles with a non-photosynthetic bacterium could offer a promising new route for producing sustainable solar-driven hydrogen fuel.

Other artificial photosynthesis systems that integrate nanomaterials into living microbes have been developed before, which reduce carbon dioxide or produce hydrogen, for example. However, usually it is the microorganism itself that makes the product via a metabolic pathway, which is aided by a light-activated nanomaterial that supplies necessary electrons.

Now, the labs of Kara Bren and Todd Krauss at the University of Rochester, US, have turned this concept on its head. They have designed a new hybrid bio-nano system that combines a finely-tuned photocatalytic semiconducting nanoparticles to make hydrogen with a bacterium which, while it does not photosynthesise or make hydrogen itself, it provides the necessary electrons to the nanomaterial to synthesise hydrogen.

All-perovskite tandem solar cells, stacks of p-n junctions formed from perovskites with different energy bandgaps, have the potential of achieving higher efficiencies than conventional single-junction solar cells. So far, however, most proposed all-perovskite tandem cells have not achieved the desired power conversion efficiencies (PCEs), often due to difficulties associated with creating suitable narrow-and wide-bandgap subcells.

Researchers at Nanjing University and University of Toronto recently developed new inorganic wide-bandgap perovskite subcells that could increase the PCEs and stability of these promising . Their design, introduced in a paper in Nature Energy, involves the insertion of a passivating dipole layer at the interface between organic transport layers and inorganic perovskites within the cells.

“Our research group has been focusing on improving the PCEs of all-perovskite tandem solar cells, which have broken the world record several times and have been included in the ‘solar cell efficiency tables,’” Hairen Tan, one of the researchers who carried out the study, told Tech Xplore.

In a recent presentation, Tesla said that it was working to eliminate rare Earth magnets from its EVs over supply and toxicity concerns.

In a major move, Tesla is looking to rid its electric vehicles of rare Earth minerals, potentially eliminating the biggest environmental concern over the increasing number of EVs on the road.

The surprise announcement came during Tesla’s Master Plan 3 Investor event where the company outlined its business strategy for the next few years.


Tesla.

The Chinese billionaire will be teaching students about sustainable agriculture and food production.

Jack Ma, the co-founder of the multinational technology company, Alibaba, marks his return to teaching as he begins a public role as visiting professor at the Tokyo College in Japan today, Business Insider.

Once the richest man in China, Ma had humble beginnings and worked as an English lecturer for several years before he co-founded Alibaba.


World Economic Forum/ Wikimedia Commons.

The first deliveries of the Tesla Cybertruck are expected to take place later this year, and there are still a handful of unknowns about the futuristic truck. In recent weeks, however, Tesla CEO Elon Musk shared some details about the vehicle, alongside some included in the automaker’s latest Master Plan.

In its Master Plan 3 unveiled on April 5, Tesla stated that the Cybertruck will have a 100 kWh battery pack. However, it’s not clear if this refers to a base model or another specific variant, as reported by The Street. The battery pack size is the same as those of the Model S and X, Tesla’s premium-level sedan and SUV, despite the truck being a wider and heavier vehicle than these.

Cybertruck rivals in the electric pickup sector include the Rivian R1T and the Ford F-150 Lightning, which feature 135 kWh and 131 kWh battery packs, respectively. The Cybertruck will also include a 3,500-pound payload capacity, adjustable air suspension, and lockable exterior storage measuring about 100 cubic feet.

More than one in three new vehicles sold in 2030 will be electric thanks to “explosive” growth in the market, according to the International Energy Agency (IEA).

The influential Paris-based group says electric cars are already on track to make up 18% of sales in 2023. With new policies driving growth in the US and the EU, the share of electric models in 2030 is now set to be more than double what it expected just two years ago.

The expansion means that the demand for oil-based fuels such as petrol and diesel in the road transport sector will start to decline within just two years. Around 5% of current oil demand will have been wiped out by 2030, it adds.

In a new study, scientists have observed long-lived excitons in a topological material, opening intriguing new research directions for optoelectronics and quantum computing.

Excitons are charge-neutral quasiparticles created when light is absorbed by a semiconductor. Consisting of an excited electron coupled to a lower-energy electron vacancy or hole, an exciton is typically short-lived, surviving only until the electron and hole recombine, which limits its usefulness in applications.

“If we want to make progress in quantum computing and create more sustainable electronics, we need longer exciton lifetimes and new ways of transferring information that don’t rely on the charge of electrons,” said Alessandra Lanzara, who led the study. Lanzara is a senior faculty scientist at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and a UC Berkeley physics professor. “Here we’re leveraging topological material properties to make an exciton that is long lived and very robust to disorder.”