БЛОГ

Archive for the ‘sustainability’ category: Page 266

Apr 17, 2022

Next-generation solar cells reach 24% efficiency

Posted by in categories: solar power, sustainability

A German research team has developed a tandem solar cell that reaches 24 percent efficiency—measured according to the fraction of photons converted into electricity (i.e., electrons). This sets a new world record as the highest efficiency achieved so far with this combination of organic and perovskite-based absorbers. The solar cell was developed by Professor Dr. Thomas Riedl’s group at the University of Wuppertal together with researchers from the Institute of Physical Chemistry at the University of Cologne and other project partners from the Universities of Potsdam and Tübingen as well as the Helmholtz-Zentrum Berlin and the Max-Planck-Institut für Eisenforschng in Düsseldorf. The results have been published in Nature under the title “Perovskite–organic tandem solar cells with indium oxide interconnect.”

Conventional solar cell technologies are predominantly based on the semiconductor silicon and are now considered to be “as good as it gets.” Significant improvements in their efficiency—i.e., more watts of electrical power per watt of solar radiation collected—can hardly be expected. That makes it all the more necessary to develop new solar technologies that can make a decisive contribution to the energy transition. Two such alternative absorber materials have been combined in this work. Here, organic semiconductors were used, which are carbon-based compounds that can conduct electricity under certain conditions. These were paired with a perovskite, based on a lead-halogen compound, with excellent semiconducting properties. Both of these technologies require significantly less material and energy for their production compared to conventional silicon cells, making it possible to make solar cells even more sustainable.

As sunlight consists of different spectral components, i.e., colors, efficient solar cells have to convert as much of this sunlight as possible into electricity. This can be achieved with so-called tandem cells, in which different semiconductor materials are combined in the solar cell, each of which absorbs different ranges of the . In the current study the organic semiconductors were used for the ultraviolet and visible parts of the light, while the perovskite can efficiently absorb in the near-infrared. Similar combinations of materials have already been explored in the past, but now the research team succeeded in significantly increasing their performance.

Apr 17, 2022

Tesla unveils giant new 360 MWh Megapack project that is going to help power 60,000 homes

Posted by in categories: energy, sustainability

Tesla has unveiled its latest giant Megapack project consisting of 360 MWh of energy storage capacity used in concert with a solar farm to help power 60,000 homes.

Arevon is becoming one of Tesla’s biggest partners in the deployment of energy storage capacity.

Last year, Tesla and Arevon signed a deal for the former to supply a record amount of 2 GW/6 GWh of Megapack batteries to the latter for several new energy storage projects.

Apr 16, 2022

Thermophotovoltaic “Heat Engine” Design Could Change the Future of Power Grids

Posted by in categories: nuclear energy, sustainability, transportation

There are so many paths we humans are running down in our chase for a greener future it’s extremely hard to keep track of everything. The auto industry is trying to go electric, either by means of batteries or hydrogen, the aviation industry is going for biofuels, while energy production and storage, well, this one is all over the place, betting on anything from the sun to the wind and nuclear.

Apr 16, 2022

60% of Cactus Species Impacted

Posted by in categories: climatology, sustainability

A new study published in Nature reveals the likely impacts of climate change on cacti by mid-century.

Apr 15, 2022

New Heat Engine With No Moving Parts Could Fully Decarbonize the Power Grid

Posted by in categories: solar power, sustainability

The design could someday enable a fully decarbonized power grid, researchers say.

Engineers at MIT and the National Renewable Energy Laboratory (NREL) have designed a heat engine with no moving parts. Their new demonstrations show that it converts heat to electricity with over 40 percent efficiency — a performance better than that of traditional steam turbines.

The heat engine is a thermophotovoltaic (TPV) cell, similar to a solar panel’s photovoltaic cells, that passively captures high-energy photons from a white-hot heat source and converts them into electricity. The team’s design can generate electricity from a heat source of between 1,900 to 2,400 degrees Celsius 0, or up to about 4,300 degrees Fahrenheit.

Apr 15, 2022

To Escape Elon Musk, Twitter May Need To Sell Itself To … Microsoft?

Posted by in categories: Elon Musk, sustainability, transportation

Twitter could run out of options and need to find a so-called white knight, a friendly buyer that it views as more suitable than the electric-car mogul.

Apr 15, 2022

Molecular thermal energy system can store solar energy for 18 years

Posted by in categories: computing, solar power, sustainability

Developed by a Chinese-Swedish research group, the device is an ultra-thin chip that could be integrated into electronics such as headphones, smartwatches and telephones. It combines a Molecular Solar Thermal Energy Storage System (MOST) with a micro-fabricated system that includes a thermoelectric generator (TEG) with a low-dimensional material-based microelectromechanical system (MEMS).

Apr 15, 2022

Greece opens the largest double-sided solar farm in Europe

Posted by in categories: solar power, sustainability

The 204-megawatt solar park in the northern Greek town of Kozani was built by Greece’s biggest oil refiner Hellenic Petroleum.

Hellenic Petroleum is one of the largest oil companies in the Balkans but claims to be undergoing a transformation into clean energy. It has installed the largest solar park in Greece and also hints that it may add battery storage too.

Apr 15, 2022

Researchers Set New World Record for Solar Cell Efficiency

Posted by in categories: solar power, sustainability

A German research team has developed a tandem solar cell that reaches 24 percent efficiency – measured according to the fraction of photons converted into electricity (i.e. electrons). This sets a new world record as the highest efficiency achieved so far with this combination of organic and perovskite-based absorbers. The solar cell was developed by Professor Dr. Thomas Riedl’s group at the University of Wuppertal together with researchers from the Institute of Physical Chemistry at the University of Cologne and other project partners from the Universities of Potsdam and Tübingen as well as the Helmholtz-Zentrum Berlin and the Max-Planck-Institut für Eisenforschng in Düsseldorf. The results have been published today (April 13, 2022) in Nature under the title “Perovskite/organic tandem solar cells with indium oxide interconnect.”

Conventional solar cell technologies are predominantly based on the semiconductor silicon and are now considered to be “as good as it gets.” Significant improvements in their efficiency – i.e., more watts of electrical power per watt of solar radiation collected – can hardly be expected. That makes it all the more necessary to develop new solar technologies that can make a decisive contribution to the energy transition. Two such alternative absorber materials have been combined in this work. Here, organic semiconductors were used, which are carbon-based compounds that can conduct electricity under certain conditions. These were paired with a perovskite, based on a lead-halogen compound, with excellent semiconducting properties. Both of these technologies require significantly less material and energy for their production compared to conventional silicon cells, making it possible to make solar cells even more sustainable.

Apr 13, 2022

A new heat engine with no moving parts is as efficient as a steam turbine

Posted by in categories: finance, solar power, sustainability

Engineers at MIT and the National Renewable Energy Laboratory (NREL) have designed a heat engine with no moving parts. Their new demonstrations show that it converts heat to electricity with over 40 percent efficiency—a performance better than that of traditional steam turbines.

The is a thermophotovoltaic (TPV) cell, similar to a solar panel’s photovoltaic cells, that passively captures high-energy photons from a white-hot and converts them into electricity. The team’s design can generate electricity from a heat source of between 1,900 to 2,400 degrees Celsius, or up to about 4,300 degrees Fahrenheit.

The researchers plan to incorporate the TPV cell into a grid-scale thermal battery. The system would absorb from such as the sun and store that energy in heavily insulated banks of hot graphite. When the energy is needed, such as on overcast days, TPV cells would convert the heat into electricity, and dispatch the energy to a power grid.