БЛОГ

Archive for the ‘sustainability’ category: Page 8

Sep 29, 2019

Hanwha Q Cells Dedicates Largest Solar Panel Factory In Western Hemisphere

Posted by in categories: solar power, sustainability, transportation

Hanwha Q Cells officially opened its 300,000 square foot solar panel factory in Dalton, Georgia last week, claiming it is the largest such manufacturing facility in the western hemisphere. The $200 million factory employs more than 650 workers and is capable of producing 12,000 solar panels a year — enough to generate 1.7 GW of electricity. Its standard production panel features six bus bars, has an efficiency of about 19%, and an output of up to 345 watts.

Sep 29, 2019

Unpiloted Japanese Cargo Ship Delivers Fresh Batteries and More to Space Station

Posted by in categories: robotics/AI, solar power, space, sustainability, transportation

A robotic Japanese cargo ship successfully arrived at the International Space Station Saturday (Sept. 28) carrying more than 4 tons of supplies, including new batteries for the outpost’s solar power grid.

The Japan Aerospace Exploration Agency’s (JAXA) HTV-8 cargo ship pulled up to the space station at 7:12 a.m. EDT (1112 GMT), where it was captured by a robotic arm wielded by NASA astronaut Christina Koch inside the orbiting lab. The station and HTV-8, also known as Kounotori 8 (Kounotori means “white stork” in Japanese), were soaring 262 miles (422 kilometers) over Angola in southern Africa at the time.

“What you all have done is a testament to what we can accomplish when international teams work together towards a common goal,” Koch radioed to NASA’s Mission Control in Houston and flight controllers at JAXA’s Tsukuba Space Center in Japan. “We’re honored to have Kounotori on board, and look forward to a successful and productive mission together.”

Sep 29, 2019

Stunning Image Shows Astronaut’s-Eye View of Rocket Approaching ISS

Posted by in categories: biological, solar power, space, sustainability

This week a new group of astronauts launched from the Baikonur Cosmodrome in Kazakhstan headed for the International Space Station. The three new ISS crew members, Jessica Meir of NASA, Oleg Skripochka of Roscosmos, and Hazza Ali Almansoori of the Emirati Space Agency docked with the station several hours later, temporarily taking the population of the station to nine people. That marks the largest crew aboard the ISS since 2015, but members of previous Expedition team 60 will be returning to Earth in around a week.

While the transferring of astronauts to and from the ISS is fairly standard for space agencies these days, there was something special about this mission. Astronaut Christina Koch was looking forward to being joined by her best friend and fellow NASA astronaut Jessica Meir, so she decided to capture an image of the incoming craft from her perspective on board the ISS. The result is the stunning photo above, showing the ghostly trails from the first stage and the cloud of vapor around the craft.

The astronauts traveled aboard a Soyuz MS-15 spacecraft, docking at the station’s Zvezda service module six hours after launch. The crew will stay aboard the ISS for at least six months and will be working on scientific projects in varied fields including biology, physical sciences, and the development of new technologies. They will also perform upgrades to the stations including installing new lithium-ion batteries which collect power from the station’s solar panels, part of an ongoing project to update the ISS’s power system.

Sep 27, 2019

Solar panels made with ink

Posted by in categories: solar power, sustainability

Forget solar roofs, these solar panels are cheap, paper-thin and made with a revolutionary conductive ink.

Sep 26, 2019

Meet Eight Tech Titans Investing In Synthetic Biology

Posted by in categories: bioengineering, biotech/medical, computing, food, sustainability

“DNA is like a computer program but far, far more advanced than any software ever created.” Bill Gates wrote this in 1995, long before synthetic biology – a scientific discipline focused on reading, writing, and editing DNA – was being harnessed to program living cells. Today, the cost to order a custom DNA sequence has fallen faster than Moore’s law; perhaps that’s why the Microsoft founder is turning a significant part of his attention, and wallet, towards this exciting field.

Bill Gates is not the only tech founder billionaire that sees a parallel between bits and biology, either. Many other tech founders – the same people that made their money programming 1s and 0s – are now investing in biotech founders poised to make their own fortunes by programming A’s, T’s, G’s and C’s.

The industry has raised more than $12.3B in the last 10 years and last year, 98 synthetic biology companies collectively raised $3.8 billion, compared to just under $400 million total invested less than a decade ago. Synthetic biology companies are disrupting nearly every industry, from agriculture to medicine to cell-based meats. Engineered microorganisms are even being used to produce more sustainable fabrics and manufacture biofuels from recycled carbon emissions.

Sep 26, 2019

NASA Considers Robotic Lunar Pit Mission; Moon’s Subsurface Key To Long-Term Settlement

Posted by in categories: robotics/AI, space, sustainability

The Moon’s subsurface is the key to its longterm development and sustainability, says NASA scientist.


A view of the Apollo 11 lunar module “Eagle” as it returned from the surface of the moon to dock … [+] with the command module “Columbia”. A smooth mare area is visible on the Moon below and a half-illuminated Earth hangs over the horizon. Command module pilot Michael Collins took this picture.

Sep 26, 2019

Can We Redesign The Modern City With Synthetic Biology? Could We Grow Our Houses Instead Of Building Them?

Posted by in categories: bioengineering, biotech/medical, food, habitats, sustainability

Imagine waking up every morning in a house that is just as alive as you are. With synthetic biology, your future home could be a living, breathing marvel of nature and biotechnology. Yes, it’s a bold ambition. But this kind of visionary thinking could be the key to achieving sustainability for modern cities.

Our current homes and cities are severely outdated. Dr. Rachel Armstrong, a synthetic biologist and experimental architect, says, “All our current buildings have something in common: they’re built using Victorian technologies.” Traditional design, manufacturing, and construction processes demand huge amounts of energy and resources, but the resulting buildings give nothing back. To make our future sustainable, we need dynamic structures that give as much as they take. We need to build with nature, not against it.

In nature, everything is connected. For the world’s tallest trees—the California redwoods— their lives depend on their connection to each other as well as on a host of symbiotic organisms. Winds and rain batter the California coast, so redwoods weave their roots together for stability, creating networks that can stretch hundreds of miles. The rains also leach nutrients from the soil. But fungi fill the shortage by breaking down dead organic matter into food for the living. A secondary network of mycelia—the root-like structures of the fungi—entwine with the tree roots to transport nutrients, water, and chemical communications throughout the forest. What if our future cities functioned like these symbiotic networks? What if our future homes were alive?

Sep 26, 2019

A new non-fullerene acceptor for indoor solar energy applications

Posted by in categories: solar power, sustainability

Organic photovoltaic (OPV) cells, a third-generation solar cell technology that can convert solar energy into electricity, have been found to be more efficient than silicon cells under low light intensity indoor LED illumination. These cells have also shown great potential for powering low consumption, off-the grid electronics in indoor environments.

Despite their huge potential, the of OPV is currently limited by substantial losses in their open-circuit voltage. In addition, past studies suggest that when used for indoor illumination their is far from optimal.

In a quest to overcome these limitations, a team of researchers at the Chinese Academy of Sciences in China and Linköping University in Sweden have recently designed a non-fullerene acceptor for that could enable high-performance organic photovoltaic cells for indoor applications. This new acceptor, presented in a paper published in Nature Energy, can be blended with a polymer donor to obtain a photoactive layer with an absorption spectrum that matches that of indoor light sources.

Sep 25, 2019

This New Solar-Powered Catamaran Has Unlimited Range and Is Completely Silent

Posted by in category: sustainability

Thanks to solar-powered propulsion and household (meaning no generators are required to run the lights, air conditioning, etc.), and with electric propulsion when needed, the 56-foot catamaran has unlimited range, no noise or fumes, minimal vibration and is virtually maintenance-free. It’s smooth and serene cruising at its best where both the environment and owner’s enjoyment come first. And operation costs are kept to a minimum, too.

Sep 25, 2019

Future Tech: Spinning a Space Station

Posted by in categories: 3D printing, engineering, robotics/AI, solar power, space, sustainability

The ultimate way of building up space structures would be to use material sourced there, rather than launched from Earth. Once processed into finished composite material, the resin holds the carbon fibres together as a solid rather than a fabric. The beams can be used to construct more complex structures, antennae, or space station trusses. Image credit: All About Space/Adrian Mann.

The International Space Station is the largest structure in space so far. It has been painstakingly assembled from 32 launches over 19 years, and still only supports six crew in a little-under-a-thousand cubic metres of pressurised space. It’s a long way from the giant rotating space stations some expected by 2001. The problem is that the rigid aluminium modules all have to be launched individually, and assembled in space. Bigelow Aerospace will significantly improve on this with their inflatable modules that can be launched as a compressed bundle; but a British company has developed a system that could transform space flight, by building structures directly in space.

Magna Parva from Leicester are a space engineering consultancy, founded in 2005 by Andy Bowyer and Miles Ashcroft. Their team have worked on a range of space hardware, from methods to keep Martian solar panels clear of dust, to ultrasonic propellant sensors, to spacecraft windows. But their latest project is capable of 3D printing complete structures in space, using a process called pultrusion. Raw carbon fibres and epoxy resin are combined in a robotic tool to create carbon composite beams of unlimited length – like a spider creating a web much larger than itself. Building structures in space has a range of compounding virtues, it is more compact than even inflatables, as only bulk fibre and resin need to be launched. Any assembled hardware that has to go through a rocket launch has to be made much stronger than needed in space to survive the launch, printed structures can be designed solely for their in space application, using less material still.

Page 8 of 167First56789101112Last