Toggle light / dark theme

Hyundai Motor Group is taking a bold step into the future of factory automation with plans to deploy Atlas humanoid robots at its Metaplant America facility in Georgia.

These advanced bipedal robots, developed by Boston Dynamics are designed to perform tasks traditionally carried out by humans.

As per a report on Nikkei Asia, Atlas will automate up to 40 percent of vehicle assembly work at the facility by the end of this year.

Increasingly stricter regulations on emissions from lean-burn engines, such as the Euro 7 standard, are approaching. This requires the development of catalytic materials that can reduce the toxic nitrogen oxides efficiently at low temperatures. Researchers at the Department of Physics at Chalmers University of Technology, together with industrial partner Umicore, now present a study showing how machine learning could help engines run cleaner.

Catalytic converters reduce the amount of toxic pollutants emitted into the air from a vehicle’s exhaust system. Stricter regulations on emissions standards within the coming years, such as the European Union’s proposed Euro 7, aim at further reducing air pollution from vehicles. Therefore, improved catalysts are needed to limit the emissions of harmful pollutants.

The main technology of selective catalytic reduction of uses ammonia as a reducing agent. Thus, the catalytic material should promote the formation of a nitrogen–nitrogen bond between nitrogen oxides and ammonia in an oxygen-rich environment and prevent unwanted reactions, which include the oxidation of ammonia to even more nitrogen oxides or nitrous oxide.

Featuring the Electro-Mechanical Brake and by-wire technology on the rear brakes, the project will also include ZF’s Integrated Brake Control and traditional front calipers, creating a ‘hybrid’ braking system of by-wire and hydraulics that offers increased flexibility to the manufacturer. The agreement will also provide significant steering technology with ZF’s Electric Recirculating Ball Steering Gear. This cutting-edge braking technology combined with traditional braking systems and innovative steering tools further solidifies ZF’s position as the industry leader in providing complete chassis solutions to its customers while providing a major customer win.

“We are all proud to see ZF’s technology leadership in the Chassis segment providing tangible value for our customers. Our goal when combining our steering, braking, dampers and actuators as well as corresponding software businesses into a single division was to create the world’s most comprehensive Chassis Solutions product and system offering,” said Peter Holdmann, Board of Management member at ZF and head of Division Chassis Solutions. “This combined center of expertise allows us to offer comprehensive solutions that integrate advanced engineering, innovative design, and cutting-edge technology to deliver unparalleled performance and safety.”

The road to the software-defined vehicle With the Electro-Mechanical Brake (EMB) as a key component of the brake-by-wire technology, ZF lays the foundation for the software-defined vehicle that will lead to new functions and features, many that emphasize safety as much as driving comfort. One such feature being explored with by-wire technology is the ability for the vehicle to autonomously brake and steer in a crash situation.


ZF’s Electro-Mechanical Brake provides premium performance for automatic emergency braking, full energy recuperation and redundant fallback options up to full automated driving for passenger car and light truck segments.

A new study published in Nature Communications shows, for the first time, how heat moves—or rather, doesn’t—between materials in a high-energy-density plasma state.

The work is expected to provide a better understanding of inertial confinement fusion experiments, which aim to reliably achieve fusion ignition on Earth using lasers. How heat flows between a hot plasma and a material’s surface is also important in other technologies, including semiconductor etching and vehicles that fly at hypersonic speeds.

High-energy-density plasmas are produced only at extreme pressures and temperatures. The study shows that interfacial thermal resistance, a phenomenon known to impede in less extreme conditions, also prevents between different materials in a dense, super– state.

Breakthrough light-powered chip speeds up AI training and reduces energy consumption.

Engineers at Penn have developed the first programmable chip capable of training nonlinear neural networks using light—a major breakthrough that could significantly accelerate AI training, lower energy consumption, and potentially lead to fully light-powered computing systems.

Unlike conventional AI chips that rely on electricity, this new chip is photonic, meaning it performs calculations using beams of light. Published in Nature Photonics.

Aluminum alloys are well-known for their low weight and corrosion resistance, making them ideal candidates for applications in a low-carbon economy—from lightweight automobiles to tanks for storing green hydrogen. However, their widespread application is limited by a key challenge: they suffer from embrittlement leading to cracking and failure when exposed to hydrogen. Until now, alloys resistant to hydrogen embrittlement were rather soft, limiting their application in hydrogen-related technologies that require high strength.

Now, researchers from the Max Planck Institute for Sustainable Materials (MPI-SusMat) in Germany, together with partners from China and Japan, have developed a new alloy design strategy that overcomes this dilemma. Their approach enables both exceptional strength and superior resistance to hydrogen embrittlement (HE), paving the way for safer and more efficient aluminum components in the hydrogen economy. They have published their results in the journal Nature.

Recently, a research team achieved real-time tracking of electronic/magnetic structure evolution in Li-rich Mn-based materials during the initial cycling through the self-developed operando magnetism characterization device.

Their study, published in Advanced Materials, elucidated the critical mechanism underlying the oxygen reaction. The research team was led by Prof. Zhao Bangchuan from the Institute of Solid State Physics, the Hefei Institutes of Physical Science of the Chinese Academy of Sciences, in collaboration with Prof. Zhong Guohua from the Shenzhen Institute of Advanced Technology and Prof. Li Qiang from Qingdao University.

With the rise of electric vehicles and the low-altitude economy, the demand for high-energy-density batteries is growing. Li-rich Mn-based materials stand out due to their high capacity, wide voltage range, and .