Toggle light / dark theme

Is buzzy startup Humane’s big idea a wearable camera?

The demo is clever, questionably real, and prompts a lot of questions about how this device will actually work.

Buzz has been building around the secretive tech startup Humane for over a year, and now the company is finally offering a look at what it’s been building. At TED last month, Humane co-founder Imran Chaudhri gave a demonstration of the AI-powered wearable the company is building as a replacement for smartphones. Bits of the video leaked online after the event, but the full video is now available to watch.

The device appears to be a small black puck that slips into your breast pocket, with a camera, projector, and speaker sticking out the top. Throughout the 13-minute presentation, Chaudhri walks through a handful of use cases for Humane’s gadget: * The device rings when Chaudhri receives a phone call. He holds his hand up, and the device projects the caller’s name along with icons to answer or ignore the call. He then has a brief conversation. (Around 1:48 in the video) * He presses and holds one finger on the device, then asks a question about where he can buy a gift. The device responds with the name of a shopping district. (Around 6:20) * He taps two fingers on the device, says a sentence, and the device translates the sentence into another language, stating it back using an AI-generated clone of his voice. (Around 6:55) * He presses and holds one finger on the device, says, “Catch me up,” and it reads out a summary of recent emails, calendar events, and messages. (At 9:45) * He holds a chocolate bar in front of the device, then presses and holds one finger on the device while asking, “Can I eat this?” The device recommends he does not because of a food allergy he has. He presses down one finger again and tells the device he’s ignoring its advice. (Around 10:55)

Chaudhri, who previously worked on design at Apple for more than two decades, pitched the device as a salve for a world covered in screens. “Some believe AR / VR glasses like these are the answer,” he said, an image of VR headsets behind him. He argued those devices — like smartphones — put “a further barrier between you and the world.”

Humane’s device, whatever it’s called, is designed to be more natural by eschewing the screen. The gadget operates on its own. “You don’t need a smartphone or any other device to pair with it,” he said.

This is Humane’s Secret Device (Concept)

Two former Apple employees have just unveiled their “iPhone killer” AI-powered wearable that could make smartphones a thing of the past.


What if I told you that some of the minds behind the first iPhone, and many other silicon valley veterans, are now working to replace it?

They believe technology went in the wrong way, and now they want to fix this.

They have yet to show anything to the public, but some investors had many nice things to say about them.

This is Humane, and in this video, I’ll show you my concept of how the hardware and the UI of their device could be.

Additively manufacturing soft robots could reduce waste, increase performance

Soft robotics have several key advantages over rigid counterparts, including their inherent safety features—soft materials with motions powered by inflating and deflating air chambers can safely be used in fragile environments or in proximity with humans—as well as their flexibility that enables them to fit into tight spaces. Textiles have become a choice material for constructing many types of soft robots, especially wearables, but the traditional “cut and sew” methods of manufacturing have left much to be desired.

Now, researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have established a new approach for additively manufacturing , using a 3D knitting method that can holistically “print” entire soft robots. Their work is reported in Advanced Functional Materials.

“The soft robotics community is still in the phase of seeking alternative materials approaches that will enable us to go beyond more classical rigid robot shapes and functions,” says Robert Wood, senior corresponding author on the paper, who is the Harry Lewis and Marlyn McGrath Professor of Engineering and Applied Sciences at SEAS.

Humane’s new wearable AI demo is wild to watch — and we have lots of questions

The demo is clever, questionably real, and prompts a lot of questions about how this device will actually work.

Buzz has been building around the secretive tech startup Humane for over a year, and now the company is finally offering a look at what it’s been building. At TED last month, Humane co-founder Imran Chaudhri gave a demonstration of the AI-powered wearable the company is building as a replacement for smartphones. Bits of the video leaked online after the event, but the full video is now available to watch.

The device appears to be a small black puck that slips into your breast pocket, with a camera, projector, and speaker sticking out the top.


From a designer with two decades’ experience at Apple.

Why you don’t want ‘phantom energy’ on a spacecraft

You may not have heard of piezoelectric materials, but odds are, you have benefitted from them.

Piezoelectric materials are —like crystals, bone or proteins—that produce an electric current when they are placed under mechanical stress.

Materials that harvest energy from their surroundings (through light, heat and motion) are finding their way into solar cells, wearable and implantable electronics and even onto spacecraft. They let us keep devices charged for longer, maybe even forever, without the need to connect them to a power supply.

Study presents large brain-like neural networks for AI

In a new study in Nature Machine Intelligence, researchers Bojian Yin and Sander Bohté from the HBP partner Dutch National Research Institute for Mathematics and Computer Science (CWI) demonstrate a significant step towards artificial intelligence that can be used in local devices like smartphones and in VR-like applications, while protecting privacy.

They show how brain-like neurons combined with novel learning methods enable training fast and energy-efficient spiking on a large scale. Potential applications range from wearable AI to and Augmented Reality.

While modern artificial neural networks are the backbone of the current AI revolution, they are only loosely inspired by networks of real, biological neurons such as our brain. The brain however is a much larger network, much more energy-efficient, and can respond ultra-fast when triggered by external events. Spiking neural networks are special types of neural networks that more closely mimic the working of biological neurons: the neurons of our nervous system communicate by exchanging electrical pulses, and they do so only sparingly.

/* */