Toggle light / dark theme

A Korean research team has developed a soft, mechanically deformable, and stretchable lithium battery that can be used in the development of wearable devices, and examined the battery’s feasibility by printing them on clothing surfaces. The research team, led by Dr. Jeong Gon Son from the Soft Hybrid Materials Research Center at the Korea Institute of Science and Technology (KIST; President: Seok-Jin Yoon), announced that they had developed a lithium battery wherein all of the materials, including the anode, cathode, current collector, electrolytes, and encapsulant, are stretchable and printable. The lithium battery developed by the team possesses high capacity and free-form characteristics suitable for mechanical deformation.

Owing to the rapidly increasing demand for high-performance wearable devices—such as smart bands, implantable electronic devices such as pace-makers, and soft wearable devices for use in the realistic metaverse—the development of a that is soft and stretchable like the human skin and organs has been attracting interest.

The hard, inorganic electrode of a conventional battery comprises the majority of the battery’s volume, making it difficult to stretch. Other components, such as the separator and the current collector for drawing and transferring charges, must also be stretchable, and the liquid electrolyte leakage issue must also be resolved.

An elastic light-emitting polymer that glows like a filament in a light bulb could lead to affordable, practical and robust flexible screens.

Flexible screens could form part of wearable computers that stick to our skin and do away with the need to carry a separate smartphone or laptop. But the various existing flexible displays all have flaws: they either require high voltages to run, are too fragile, too expensive, not bendy enough or lack brightness.

When you’re building wearables and glowables, sometimes a flashy rainbow animation is all you need. [Geeky Faye] likes to go a little further, however, and built this impressive necklace that serves to inform on the local air quality.

The necklace consists of a series of Neopixel LED strips, housed within a tidy 3D printed housing made with flexible filament. A dovetail joint makes putting on and removing the necklace a cinch. A TinyPico V2, based on the ESP32, runs the show, as it’s very small and thus perfect for the wearable application. A USB power bank provides power to the microcontroller and LEDs.

The TinyPico uses its WiFi connection to query a server fed with air quality data from a separate sensor unit. The necklace displays a calm breathing animation as standard in cool tones. However, when air quality deteriorates, it shows warmer and hotter colors in a more pointed and vibrant fashion.

As any cat owner will tell you, a cat’s ears are great indicators of its state of mind: pointed forward if they want your attention, turned backwards if they’re angry, and folded down flat when they’re afraid. Humans sometimes don cat ear headbands as a fashion statement, but sitting motionless those ears are more likely to confuse a cat than to provide any meaningful communication.

[Jazz DiMauro] aims to fill that gap by designing a cat ear headband that actually responds to your emotions. It does so by continuously taking an EEG measurement and extracting the “attention” and “meditation” variables from it. Those values are then applied to a set of servos that allow two-axis motion on each 3D printed ear. The EEG readout device is an off-the-shelf MindWave headset, which outputs its sensor data through Bluetooth. An Arduino then reads out the data and drives the servos.

Turning all this into a usable wearable device was a project on its own: [Jazz] went through several iterations to find a suitable power source and wiring strategy until they settled on a pair of lithium-polymer batteries and a single flat cable. The end result looks comfortable enough to wear, and the ears’ motion looks smooth and natural. All that’s left is to test it with real cats, to find out if they can now finally understand their human’s emotions too.

Would you share your data for the common good? Biomechanist Jacqueline Alderson shows how sophisticated simulations based on real data can help prevent disease, illness and injury. Jacqueline Alderson is an Associate Professor of Biomechanics at the University of Western Australia and Adjunct Professor of Human Performance, Innovation and Technology at the Auckland University of Technology. She has always been curious about movement — whether it’s helping surgeons make best practice decisions or helping AFL players avoid knee injuries. She now travels the world to share her knowledge in human movement, wearable tech and artificial intelligence and its role in tracking, analysing and intervening in the human condition. This talk was given at a TEDx event using the TED conference format but independently organized by a local community.

Google has patented technology that will let users control its smartwatches and earbuds by simply touching their skin.

The patent titled “Skin interface for Wearables: Sensor fusion to improve signal quality” was spotted by folks over at LetsGoDigital. It details tech that users can use to operate wearable devices using skin gestures.

Patent documents show that users can swipe or tap the skin near the wearables in order to control them. The gesture creates a mechanical wave that is picked up by the sensors in the wearables. The “Sensor Fusion” tech then combines this movement data collected from various sensors into an input command for the wearable.

Is the Chief Medical Officer at Current Health (https://currenthealth.com/), a Best Buy Health company (https://healthcare.bestbuy.com/) and part of the American multinational consumer electronics retailer.

Current Health is an organization that enables the delivery of healthcare services in the home to enable healthcare organizations to deliver high-quality, patient-centric care at a lower cost. The company integrates patient-reported data with data from biosensors – including their own continuous monitoring wearable devices – to provide healthcare organizations with actionable, real-time insights into the patient’s condition. Leveraging clinical algorithms that can be tailored to the individual patient, Current Health identifies when a patient needs clinical attention, allowing organizations to manage patient care remotely or coordinate in-home care via integrated service partners. The Current Health platform brings together tele-health capabilities, patient engagement tools, and in-home connectivity to provide a single solution to manage all care in the home. Dr. Wolfberg also leads implementation and account management at the organization.

Previously, Dr Wolfberg worked in medical affairs at Ovia Health, a leading maternity and family benefits solution for employers and health plans (which was acquired by LabCorp), athenahealth (network-enabled services, mobile apps, and data-driven insights to hospitals and medical organizations) and Ariosa Diagnostics.

Dr. Wolfberg trained in OB/GYN and maternal-fetal medicine at The Johns Hopkins University School of Medicine, and has an MPH from Johns Hopkins School of Hygiene and Public Health.

Before going to medical school, Dr. Wolfberg was a print journalist. He blogs at www.adamwolfberg.com, and has written for magazines and websites including the Boston Globe Magazine, Slate.com, Huffington Post, and WSJ.com. His first book, Fragile Beginnings : Discoveries and Triumphs in the Newborn ICU, was published by Beacon Press in 2012.

No he does not respond to the resveratrol challenges. Important here are the chapters concerning Resetting the Ageing Clock and Repeatable Ageing Reversal.


In the final episode of this season, Dr. David Sinclair and Matthew LaPlante focus on current and near-future technologies relevant to health and aging. In addition to discussing the utility of wearable sensors and biological age measurements, they highlight innovative research aimed at reversing biological age. The societal effects of therapies that successfully extend healthspan and/or lifespan are also considered.

#DavidSinclair #Longevity #Aging.

Thank you to our sponsors:
Levels — https://levels.link/sinclair.
Athletic Greens — https://athleticgreens.com/sinclair.
InsideTracker — https://insidetracker.com/sinclair.

Our Patreon page: