БЛОГ

Page 1397

Feb 6, 2024

Can AI Unlock the Secrets of the Ancient World?

Posted by in category: robotics/AI

Almost 2,000 years ago, a volcano preserved Herculaneum’s vast library of scrolls in unreadable char. A volunteer army of nerds has been racing to decipher them.

Feb 6, 2024

Tunnel that could lead to Cleopatra’s Tomb is ‘geometric miracle’

Posted by in category: futurism

The tunnel was discovered 13 meters below the ground by Katharine Martinez, an archaeologist from the Dominican Republic.

Feb 6, 2024

Breaking boundaries in quantum photonics: New nanocavities unlock new frontiers in light confinement

Posted by in categories: materials, quantum physics

In a significant leap forward for quantum nanophotonics, a team of European and Israeli physicists has introduced a new type of polaritonic cavities and redefined the limits of light confinement. This pioneering work, detailed in a study published in Nature Materials, demonstrates an unconventional method to confine photons, overcoming the traditional limitations in nanophotonics.

Physicists have long been seeking ways to force photons into increasingly small volumes. The natural length scale of the is the wavelength and when a photon is forced into a cavity much smaller than the wavelength, it effectively becomes more “concentrated.” This concentration enhances interactions with electrons, amplifying quantum processes within the cavity.

However, despite significant success in confining light into deep subwavelength volumes, the effect of dissipation (optical absorption) remains a major obstacle. Photons in nanocavities are absorbed very quickly, much faster than the wavelength, and this dissipation limits the applicability of nanocavities to some of the most exciting quantum applications.

Feb 6, 2024

Watch Boston Dynamics’ Atlas humanoid handle automotive struts

Posted by in category: futurism

Atlas demonstrates the ability to pick up and move heavy automotive parts.

Feb 6, 2024

The Iconic Photos from STS-41B: Documenting the First Untethered Spacewalk

Posted by in category: space

The MMU was the highlight of the STS-41B mission as demonstrated by the stunning mission photographs that graced the cover of Aviation Week & Space Technology, not once, not twice, but three times.

“Hoot” Gibson, the flight’s pilot, shot the photograph featured on the February 20, 1984, issue of the magazine from the crew cabin. Gibson remembered he was the only one on the crew that “had absolutely nothing to do” as McCandless made his way out into space, so he picked up a Hasselblad camera and began documenting the events. When he first looked through the camera’s viewfinder, he could not believe what an incredible sight it was to see McCandless untethered, floating above the Earth. Gibson wanted to capture what he was seeing and remembered how meticulous he was. For each photograph he took three light meter readings and checked the focus four times. In the crew’s photography training he learned that an off-kilter horizon looked wrong and was not pleasing to the eye. That presented a slight problem because Challenger was at a 28.5-degree inclination, so he “tilted the camera to put the horizon level in the pictures.”

Feb 6, 2024

Hubble’s New Photo Shows the Immense Scale of Galaxies

Posted by in category: space

A dense galaxy is much different than it appears.

Feb 6, 2024

Breakthrough recombinase technology ushers in precise, adaptable gene editing

Posted by in categories: bioengineering, biotech/medical

A team of researchers at the Carl Gustav Carus Faculty of Medicine, TUD Dresden University of Technology, led by Prof. Frank Buchholz, has achieved a major breakthrough in genome editing technology. They’ve developed a cutting-edge method that combines the power of designer-recombinases with programmable DNA-binding domains to create precise and adaptable genome editing tools.

Traditional genome editing faced limitations in achieving ultimate precision until now. Prof. Buchholz’s team has broken through this barrier by creating what many have sought after: a zinc-finger conditioned recombinase. This innovative approach involves integrating a zinc-finger DNA-binding domain into specially designed recombinases. These enzymes remain inactive until the DNA-binding domain engages with its target site, adjacent to the recombinase binding area.

The significance of this achievement lies in the fusion of two key strengths: the targeting ease of programmable nucleases and the precise DNA editing capabilities of recombinases. This breakthrough overcomes existing limitations in genome editing techniques and holds vast promise for therapeutic gene editing and various biomedical applications.

Feb 6, 2024

Jaundice: Newborn babies may have a yellowish tint to their skin or the whites of their eyes

Posted by in category: health

This condition is called jaundice. Symptoms can also appear in adults. For adults, it can be a sign of a serious health condition. Learn more about the causes of jaundice:


Jaundice is a yellow coloring of the skin or eyes caused by too much bilirubin in the body. Jaundice can happen for many reasons. Learn about it here.

Feb 6, 2024

Immune response, not acute viral infections, responsible for neurological damage, researchers discover

Posted by in category: biotech/medical

For years, there has been a long-held belief that acute viral infections like Zika or COVID-19 are directly responsible for neurological damage, but researchers from McMaster University have now discovered that it’s the immune system’s response that is behind it.

The research, published on Feb. 5, 2024, in Nature Communications, was led by Elizabeth Balint, a Ph.D. student at McMaster, and Ali Ashkar, a professor with the Department of Medicine and the Canada Research Chair in Natural Immunity and NK Cell Function.

“We were interested in trying to understand why so many are associated with ,” says Balint. “Our evidence suggests that it’s not the virus itself that causes the damage, but a unique population of T cells, which are part of the immune system, that are actually responsible for the damage.”

Feb 6, 2024

An Integrated Approach to Evaluate Acetamiprid-induced Oxidative Damage to tRNA in Human Cells based on Oxidized Nucleotide and tRNA Profiling

Posted by in categories: biotech/medical, life extension, neuroscience

Acetamiprid-induced oxidative stress can harm DNA and tRNA, leading to health problems. A study conducted by Huixia Zhang at Macau University of Science and Technology in 2023 introduced a comprehensive approach to assessing acetamiprid-induced oxidative damage to tRNA in human cells through oxidized nucleotide and tRNA profiling. Acetamiprid, a modern insecticide, is known for causing oxidative stress and related toxicity. Despite its impact on oxidative stress, the effects of acetamiprid-induced oxidative stress on RNA, especially tRNA, remained unexplored until this study.

Acetamiprid was found to elevate reactive oxygen species (ROS) production in HepG2 and LO2 cells, contributing to mitochondrial damage, free radical generation, and antioxidant status depletion. Oxidative damage to DNA and RNA can harm organisms, with prior research addressing RNA damage in aging, neurodegenerative diseases, and mental illnesses. However, its role in acetamiprid-induced toxicities has not been investigated.

The study employed TMSD labeling-based LC-MS/MS to measure oxidized nucleotide levels in HepG2 and LO2 cells treated with two mM acetamiprid. It also examined the impact of acetamiprid on the 8-oxo-G content of tRNAs and created volcano plots to compare RNase T1 digestion products of tRNAs from untreated and acetamiprid-treated cells.