БЛОГ

Page 3162

Mar 15, 2023

The physicist betting that space-time isn’t quantum after all

Posted by in category: quantum physics

Most experts think we have to tweak general relativity to fit with quantum theory. Physicist Jonathan Oppenheim isn’t so sure, which is why he’s made a 5000:1 bet that gravity isn’t a quantum force.

By Joshua Howgego

Mar 15, 2023

Your brain CAN’T Multitask — Here’s why

Posted by in category: neuroscience

This video explores what attention really is, what role it plays in learning and why people can’t multitask — the issue of attention residue.

OUTLINE:
0:00 — Sneak peek.
0:20 — Introduction.
0:57 — Why we need attention.
1:46 — Thalamus as attentional filter.
3:06 — Higher attentional systems.
3:40 — Role of attention in learning.
4:42 — Attention residue.
6:00 — Conclusions and references.

Continue reading “Your brain CAN’T Multitask — Here’s why” »

Mar 15, 2023

OpenAI Releases ChatGPT-4 And Performs Impressive Demonstration

Posted by in categories: biological, mathematics, robotics/AI

OpenAI has released a new version of ChatGPT, claiming that the new language learning model is capable of passing – and even excelling in – a variety of academic exams.

ChatGPT-4, which will be available on Bing as well as the OpenAI website, is more reliable and more creative than its predecessor, according to OpenAI. The team tested the model on a number of exams designed for humans, from the bar exam to biology, using publicly available papers. While no additional training was given to the model ahead of the tests, it was able to perform well on most subjects, performing in the estimated 90th percentile for the bar exam and the 86th-100th in art history.

Continue reading “OpenAI Releases ChatGPT-4 And Performs Impressive Demonstration” »

Mar 15, 2023

Quantum Imaging Doubles Microscope Resolution

Posted by in category: quantum physics

Using entangled photons instead of classical light gives microscopes super-resolution.

Mar 15, 2023

Scientists Find A New Material That Could Change The Entire World: Study

Posted by in category: materials

https://youtube.com/watch?v=ryJxMYX7YEU

The novel substance is detailed in a research paper, Evidence of near-ambient superconductivity in a N-doped lutetium hydride, which is published in the scientific journal Nature.

Mar 15, 2023

Quantum Computing Is the Future, and Schools Need to Catch Up

Posted by in categories: computing, education, quantum physics

Top universities are finally bringing the excitement of the quantum future into the classroom.

Mar 15, 2023

Fundamental constants: Is the universe fine-tuned for life?

Posted by in categories: alien life, evolution, information science, particle physics

Imagine a universe with extremely strong gravity. Stars would be able to form from very little material. They would be smaller than in our universe and live for a much shorter amount of time. But could life evolve there? It took human life billions of years to evolve on Earth under the pleasantly warm rays from the Sun after all.

Now imagine a with extremely weak gravity. Its matter would struggle to clump together to form stars, planets and—ultimately—living beings. It seems we are pretty lucky to have gravity that is just right for life in our universe.

This isn’t just the case for gravity. The values of many forces and in the universe, represented by some 30 so-called fundamental constants, all seem to line up perfectly to enable the evolution of intelligent life. But there’s no theory explaining what values the constants should have—we just have to measure them and plug their numbers into our equations to accurately describe the cosmos.

Mar 15, 2023

Is the universe fine-tuned for life?

Posted by in categories: alien life, particle physics

For decades, various physicists have theorized that even the slightest changes in the fundamental laws of nature would make it impossible for life to exist. This idea, also known as the “fine-tuned universe” argument, suggests that the occurrence of life in the universe is very sensitive to the values of certain fundamental physics. Alter any of these values (as the logic goes), and life would not exist, meaning we must be very fortunate to be here.

But can this really be the case, or is it possible that life can emerge under different physical constants, and we just don’t know it? This question was recently tackled by Luke A. Barnes, a postdoctoral researcher at the Sidney Institute for Astronomy (SIA) in Australia. In his book, “A Fortunate Universe: Life in a Finely Tuned Cosmos,” he and Sydney astrophysics professor Geraint F. Lewis argued that a fine-tuned universe makes sense from a standpoint.

The authors also summarized these arguments in an invited contribution paper, which appeared in the Routledge Companion to Philosophy of Physics (1st ed.) In this paper, titled “The Fine-Tuning of the Universe for Life,” Barnes explains how “fine-tuning” consists of explaining observations by employing a “suspiciously precise assumption.” This, he argues, has been symptomatic of incomplete theories throughout history and is a common feature of modern cosmology and .

Mar 15, 2023

Is the ‘fine-tuned universe’ an illusion?

Posted by in categories: alien life, particle physics

For decades physicists have been perplexed about why our cosmos appears to have been precisely tuned to foster intelligent life. It is widely thought that if the values of certain physical parameters, such as the masses of elementary particles, were tweaked, even slightly, it would have prevented the formation of the components necessary for life in the universe—including planets, stars, and galaxies. But recent studies, detailed in a new report by the Foundational Questions Institute, FQXi, propose that intelligent life could have evolved under drastically different physical conditions. The claim undermines a major argument in support of the existence of a multiverse of parallel universes.

“The tuning required for some of these physical parameters to give rise to life turns out to be less precise than the tuning needed to capture a station on your radio, according to new calculations,” says Miriam Frankel, who authored the FQXi report, which was produced with support from the John Templeton Foundation. “If true, the apparent fine tuning may be an illusion,” Frankel adds.

Over the last few decades, the subject of fine tuning has attracted some of the sharpest minds in physics. By probing the ’s physical laws and precisely pinning down the values of physical constants—such as the masses of elementary particles and the strengths of forces—physicists have discovered that surprisingly small variations in these values would have rendered the universe lifeless. This led to a puzzle: why are physical conditions seemingly tailored towards human existence?

Mar 15, 2023

Could AI-powered object recognition technology help solve wheat disease?

Posted by in categories: bioengineering, biotech/medical, economics, health

A new University of Illinois project is using advanced object recognition technology to keep toxin-contaminated wheat kernels out of the food supply and to help researchers make wheat more resistant to fusarium head blight, or scab disease, the crop’s top nemesis.

“Fusarium head blight causes a lot of economic losses in wheat, and the associated toxin, deoxynivalenol (DON), can cause issues for human and animal health. The disease has been a big deterrent for people growing wheat in the Eastern U.S. because they could grow a perfectly nice crop, and then take it to the elevator only to have it get docked or rejected. That’s been painful for people. So it’s a big priority to try to increase resistance and reduce DON risk as much as possible,” says Jessica Rutkoski, assistant professor in the Department of Crop Sciences, part of the College of Agricultural, Consumer and Environmental Sciences (ACES) at Illinois. Rutkoski is a co-author on the new paper in the Plant Phenome Journal.

Increasing resistance to any traditionally means growing a lot of genotypes of the crop, infecting them with the disease, and looking for symptoms. The process, known in plant breeding as phenotyping, is successful when it identifies resistant genotypes that don’t develop symptoms, or less severe symptoms. When that happens, researchers try to identify the genes related to and then put those genes in high-performing hybrids of the crop.