БЛОГ

Page 3174

Feb 21, 2023

A Physical Theory For When the Brain Performs Best

Posted by in categories: neuroscience, robotics/AI

Early critiques pointed out that proving a network was near the critical point required improved statistical tests. The field responded constructively, and this type of objection is rarely heard these days. More recently, some work has shown that what was previously considered a signature of criticality might also be the result of random processes. Researchers are still investigating that possibility, but many of them have already proposed new criteria for distinguishing between the apparent criticality of random noise and the true criticality of collective interactions among neurons.

Meanwhile, over the past 20 years, research in this area has steadily become more visible. The breadth of methods being used to assess it has also grown. The biggest questions now focus on how operating near the critical point affects cognition, and how external inputs can drive a network to move around the critical point. Ideas about criticality have also begun to spread beyond neuroscience. Citing some of the original papers on criticality in living neural networks, engineers have shown that self-organized networks of atomic switches can be made to operate near the critical point so that they compute many functions optimally. The deep learning community has also begun to study whether operating near the critical point improves artificial neural networks.

The critical brain hypothesis may yet prove to be wrong, or incomplete, although current evidence does support it. Either way, the understanding it provides is generating an avalanche of questions and answers that tell us much more about the brain — and computing generally — than we knew before.

Feb 21, 2023

Sean Carroll on Quantum Spacetime

Posted by in categories: cosmology, quantum physics

Interview with Prof. Sean Carroll, Research Professor of Physics at Caltech and an External Professor at the Santa Fe Institute. We mainly talk about quantum spacetime: the idea that our familiar spacetime might be actually emergent from some complex quantum mechanical system. We cover entanglement, decoherence, entropic gravity, the AdS/CFT correspondence, string theory, black holes, along with several philosophical questions concerning these topics, including reduction and emergence, substantivalism vs. relationalism, monism, and much more.

Sean’s website: https://www.preposterousuniverse.com/
His recent book concerning these topics: https://www.preposterousuniverse.com/somethingdeeplyhidden/
His papers on these topics can be found here: https://www.preposterousuniverse.com/research/annotated-publications/
His podcast: https://www.preposterousuniverse.com/podcast/
And his Twitter: https://twitter.com/seanmcarroll/

Feb 20, 2023

Hong Kong Plans to Allow Retail Crypto Trading

Posted by in category: business

Hong Kong plans to let retail investors trade digital tokens. It’s being seen as a major step toward its goal of becoming a crypto hub. Joanna Ossinger reports on Bloomberg Television.
——-
Follow Bloomberg for business news & analysis, up-to-the-minute market data, features, profiles and more: http://www.bloomberg.com.
Connect with us on…
Twitter: https://twitter.com/business.
Facebook: https://www.facebook.com/bloombergbusiness.
Instagram: https://www.instagram.com/bloombergbusiness/

Feb 20, 2023

Chinese asteroid-detection system enters new phase of construction

Posted by in category: space

The “China Compound Eye” radar array aims to track and characterize potentially threatening deep-space objects.

Feb 20, 2023

Researchers propose new mechanism for early chemical evolution

Posted by in categories: chemistry, evolution, space

Scientists from The Ohio State University have a new theory about how the building blocks of life—the many proteins, carbohydrates, lipids and nucleic acids that compose every organism on Earth—may have evolved to favor a certain kind of molecular structure.

It has to do with a concept called chirality. A geometric property inherent to certain , chirality can dictate a molecule’s shape, chemical reactivity, and how it interacts with other matter. Chirality is also sometimes referred to as handedness, as it can be best described as the dichotomy between our hands: Though they are not identical, the right and the left hand are mirror images of each other, and can’t be superimposed, or exactly overlaid on one another.

In the journal ACS Earth and Space Chemistry, researchers now propose a new model of how the molecules of life may have developed their “handedness.”

Feb 20, 2023

The enigmatic black behemoths that govern our galaxy

Posted by in category: cosmology

Scientists try to unravel the birth, growth and power of black holes, some of the most forceful yet difficult-to-detect objects in our universe.

It was only last year that astronomers were finally able to unveil the first pictures of the supermassive black hole at the center of our Milky Way galaxy. But you couldn’t actually see the black hole itself, not directly. That’s because it is so dense that its gravitational pull prevents even light from escaping.

But the image of Sagittarius A, as our galaxy’s black hole is known, revealed a glowing halo of gas around the object—an object that we now know has a million times more mass than our sun.

Feb 20, 2023

Neural Network Models of Mathematical Cognition | Silvester Sabathiel | Numerosity Workshop 2021

Posted by in categories: information science, mathematics, robotics/AI

Session kindly contributed by Silvester Sabathiel in SEMF’s 2021 Numerous Numerosity Workshop: https://semf.org.es/numerosity/

ABSTRACT
With the rise and advances in the field of artificial intelligence, opportunities to understand the finer-grained mechanisms involved in mathematical cognition have increased. A vast scope of related research has been conducted on machine learning systems that learn solving differential equations, algebraic equations and integrals or proofing complex theorems, all for which the preprocessed symbolic representations form the input and output types. However on the search for cognitive mechanisms that match the scope of humans when it comes to generalizability and applicability of mathematical concepts in the external world, a more grounded approach might be required. This involves starting with fundamental mathematical concepts that are earliest acquired in the human development and learning these within an interactive and multimodal environment. In this talk we are going to examine how artificial neural network systems within such a framework provide a controlled setup to discover possible cognitive mechanisms for intuitive numerosity perception or culturally acquired numerical concepts, such as counting. First we review impactful research results from the past, before I present the contributions of the work myself was involved in. Finally we can discuss the upcoming challenges for the field of numerical cognition and where this research journey could evolve to.

Continue reading “Neural Network Models of Mathematical Cognition | Silvester Sabathiel | Numerosity Workshop 2021” »

Feb 20, 2023

Titanosaur: ‘World’s largest dinosaur’ found in Patagonia

Posted by in category: finance

The skeleton cast of a Titanosaur is now on display at the American Museum of Natural History in New York. The 122-foot (37-meter) dinosaur skeleton is too long to fit in the exhibition hall, so its neck and head poke out toward the elevator banks, offering a surprise greeting when the doors open.

Feb 20, 2023

The Hubble telescope captures a black hole that forms stars instead of absorbing them

Posted by in category: cosmology

Astronomers in charge of the Hubble Space Telescope have discovered a black hole in the heart of a dwarf galaxy that, rather than absorbing stars, generates them.

Feb 20, 2023

Researchers store computer operating system and short movie on DNA

Posted by in categories: biotech/medical, computing, information science, mobile phones

Humanity may soon generate more data than hard drives or magnetic tape can handle, a problem that has scientists turning to nature’s age-old solution for information-storage—DNA.

In a new study in Science, a pair of researchers at Columbia University and the New York Genome Center (NYGC) show that an algorithm designed for streaming video on a cellphone can unlock DNA’s nearly full storage potential by squeezing more information into its four base nucleotides. They demonstrate that this technology is also extremely reliable.

DNA is an ideal storage medium because it’s ultra-compact and can last hundreds of thousands of years if kept in a cool, dry place, as demonstrated by the recent recovery of DNA from the bones of a 430,000-year-old human ancestor found in a cave in Spain.