БЛОГ

Page 7129

Aug 18, 2020

Cancer research breakthrough as DNA behavior is uncovered in 3D models

Posted by in categories: biotech/medical, genetics

First, we found that every cancer organoid retains the properties of the tissue of origin, so this shows that if the samples were obtained from the surgery of a colon or pancreatic cancer, the organoid closely resembles the original primary tumor. Second, we discovered that there is no contamination of normal cells, thus, the malignant pure transformed cells can be analyzed without interferences. And finally, the 3D organoid cancers are closer to the patient tumors than the commonly used 2-D cell lines.


Scientists have used 3D models to break down the DNA behavior of cancer cells, in a breakthrough new study which could revolutionize treatment for the disease.

In what is a first for science, a research team led by Dr. Manel Esteller, Director of the Josep Carreras Leukaemia Research Institute (IJC), demonstrated how 3D models (known as organoids) can now be used to develop a characterization of the DNA make-up—or the epigenetic fingerprint—of human cancer.

Continue reading “Cancer research breakthrough as DNA behavior is uncovered in 3D models” »

Aug 18, 2020

Doctors treat Parkinson’s with a novel brain cell transplant

Posted by in categories: biotech/medical, neuroscience

“How would you like to be known as the neurosurgeon who cured Parkinson’s disease?”


A month before the scheduled surgery, the four researchers were ready to chaperone the brain cells on their 190-mile journey. They never anticipated they were in for “The Amazing Race”-meets-“ER.”

It was after midnight on a late summer night in 2017, and they had less than eight hours to get the cells by ambulance, private plane, and another ambulance from Dana-Farber Cancer Institute in Boston to Weill Cornell Medical Center in Manhattan. If it took longer, the cells would almost certainly be DOA, and so might the researchers’ plan to carry out an experimental transplant surgery unprecedented in the annals of medicine: replacing the dysfunctional brain cells of a Parkinson’s disease patient with the progeny of an extraordinary type of stem cell. Created in the lab from a patch of the patient’s own skin, these cells, it was hoped, would settle into the brain like they belonged there and permanently restore the patient’s ability to walk and move normally.

Continue reading “Doctors treat Parkinson’s with a novel brain cell transplant” »

Aug 18, 2020

The Mini Tesla!

Posted by in category: futurism

Watch this this mini Tesla Cybertruck slay in a tug of war! Its so mini I thought it was controlled with a remote control… but it’s not… Check it out guys thanks to The Hacksmith.

Aug 18, 2020

USSF Transfer Q & As

Posted by in category: futurism

Some answers to your questions, please keep asking, and thanks for your patience as we #buildthespaceforce. #USSF #SpaceForce

Aug 18, 2020

Shining light into the dark: New discovery makes microscopic imaging possible in dark conditions

Posted by in categories: biological, chemistry

Curtin University researchers have discovered a new way to more accurately analyze microscopic samples by essentially making them glow in the dark through the use of chemically luminescent molecules.

Lead researcher Dr. Yan Vogel from the School of Molecular and Life Sciences said current methods of microscopic imaging rely on fluorescence, which means a light needs to be shining on the while it is being analyzed. While this method is effective, it also has some drawbacks.

“Most biological cells and chemicals generally do not like exposure to light because it can destroy things—similar to how certain plastics lose their colors after prolonged sun exposure, or how our skin can get sunburned,” Dr. Vogel said. “The light that shines on the samples is often too damaging for the living specimens and can be too invasive, interfering with the biochemical process and potentially limiting the study and scientists’ understanding of the living organisms.”

Aug 18, 2020

Driving immunometabolism to control lung infection

Posted by in categories: biotech/medical, health

When drugs to kill microbes are ineffective, host-directed therapy uses the body’s own immune system to deal with the infection. This approach is being tested in patients with COVID-19, and now a team of researchers at Trinity College Dublin has published a study showing how it might also work in the fight against tuberculosis (TB). The findings are published in the journal Frontiers in Immunology.

Although the bacteria that causes TB (called Mtb) has scourged humankind for millennia, we do not fully understand the complexities and interplay of the human to this ancient bug. Worryingly, there are increasing numbers of people with antibiotic resistant TB, which is hard to treat and is becoming a global threat to .

Scientists at the Trinity Translational Medicine Institute (TTMI) at St. James’s Hospital are dedicated to understanding the intricacies of the human immune response to Mtb with the aim of finding ways to target and promote the immune response to overcome the infection. Scientists already know that the human immune response can both under or over respond to the bacteria resulting in a difficulty to treat the disease. This complex immune response is analogous to driving with both the accelerator and the brakes fully engaged at the same time.

Aug 18, 2020

New tool helps interpret future searches for life on exoplanets

Posted by in categories: alien life, satellites

Is there life on a distant planet? One way astronomers are trying to find out is by analyzing the light that is scattered off a planet’s atmosphere. Some of that light, which originates from the stars it orbits, has interacted with its atmosphere, and provides important clues to the gases it contains. If gases like oxygen, methane or ozone are detected, that could indicate the presence of living organisms. Such gases are known as biosignatures. A team of scientists from EPFL and Tor Vergata University of Rome has developed a statistical model that can help astronomers interpret the results of the search for these “signs of life.” Their research has just been published in Proceedings of the National Academy of Sciences (PNAS).

Since the first exoplanet—a planet that orbits a star other than the sun—was discovered 25 years ago, over 4,300 more have been identified. And the list is still growing: a new one is discovered every two or three days. Around 200 of the exoplanets found so far are telluric, meaning they consist mainly of rocks, like the Earth. While that’s not the only requirement for a planet to be able to host life—it also needs to have water and be a certain distance from its sun—it is one criterion that astronomers are using to focus their search.

In the coming years, the use of gas spectroscopy to detect biosignatures in ’ atmospheres will become an increasingly important element of astronomy. Many research programs are already under way in this area, such as for the CHEOPS exoplanet-hunting satellite, which went into orbit in December 2019, and the James-Webb optical telescope, scheduled to be launched in October 2021.

Aug 18, 2020

Coffee stains inspire optimal printing technique for electronics

Posted by in categories: nanotechnology, particle physics, solar power, sustainability

Have you ever spilled your coffee on your desk? You may then have observed one of the most puzzling phenomena of fluid mechanics—the coffee ring effect. This effect has hindered the industrial deployment of functional inks with graphene, 2-D materials, and nanoparticles because it makes printed electronic devices behave irregularly.

Now, after studying this process for years, a team of researchers have created a new family of inks that overcomes this problem, enabling the fabrication of new electronics such as sensors, light detectors, batteries and solar cells.

Coffee rings form because the liquid evaporates quicker at the edges, causing an accumulation of solid particles that results in the characteristic dark ring. Inks behave like coffee—particles in the ink accumulate around the edges creating irregular shapes and uneven surfaces, especially when printing on hard surfaces like or plastics.

Aug 18, 2020

Mix-StAGE: A model that can generate gestures to accompany a virtual agent’s speech

Posted by in categories: robotics/AI, space, virtual reality

Virtual assistants and robots are becoming increasingly sophisticated, interactive and human-like. To fully replicate human communication, however, artificial intelligence (AI) agents should not only be able to determine what users are saying and produce adequate responses, they should also mimic humans in the way they speak.

Researchers at Carnegie Mellon University (CMU) have recently carried out a study aimed at improving how and robots communicate with humans by generating to accompany their speech. Their paper, pre-published on arXiv and set to be presented at the European Conference on Computer Vision (ECCV) 2020, introduces Mix-StAGE, a new that can produce different styles of co-speech gestures that best match the voice of a and what he/she is saying.

“Imagine a situation where you are communicating with a friend in a through a ,” Chaitanya Ahuja, one of the researchers who carried out the study, told TechXplore. “The headset is only able to hear your voice, but not able to see your hand gestures. The goal of our model is to predict the accompanying the speech.”

Aug 18, 2020

Black silicon UV responses exceed 130% efficiency

Posted by in categories: biotech/medical, nanotechnology, quantum physics

“For the first time ever, we have direct experimental evidence that an external quantum efficiency above 100% is possible in a single photodiode without any external antireflection,” says Hele Savin, associate professor of Micro and Nanoelectonics at Aalto University in Finland. The results come just a few years after Savin and colleagues at Aalto University demonstrated almost unity efficiency over the wavelength range 250–950 nm in photodiodes made with black silicon, where the silicon surface is nanostructured and coated to suppress losses.

Noticing some curious effects in the UV region, Savin’s group extended their study of the devices to focus on this region of the electromagnetic spectrum. UV sensing has multiple applications, including spectroscopy and imaging, flame detection, water purification and biotechnology. While annual market demand for UV photodiodes is expected to increase to 30%, the efficiency of these devices has been limited to 80% at best. To Savin’s surprise, closer analysis of their device’s response to UV light revealed that the external quantum efficiency could exceed 130%. Independent measurements at Physikalisch Technische Bundesanstalt (PTB) verified the results.