Toggle light / dark theme

The researchers believe that other MEGOs that absorb, enhance, reflect, or bend waves in new ways could be created using patterned 3D printing. The current Tufts study utilizes stereolithography. Other 3D-printing technologies, such as two-photon polymerization, could provide printing resolution down to 200 nm, which would enable the fabrication of even finer metamaterials that could detect and manipulate electromagnetic signals of even smaller wavelengths, potentially including visible light. As resolution in 3D printing improves, MEGO devices could reach terahertz frequencies.


MEDFORD, Mass., April 9, 2019 — 3D-printed metamaterials developed by a Tufts University engineering team display properties not found in conventional materials. The fabrication methods used by the team demonstrate how stereolithography-based 3D printers can be used to create 3D optical devices through a process that fuses metamaterials with geometrical optics, or MEGO. The MEGO devices can be fabricated at a lower cost than devices made using typical fabrication methods.

Read more

Instead of throwing away your broken boots or cracked toys, why not let them fix themselves? Researchers at the University of Southern California Viterbi School of Engineering have developed 3D-printed rubber materials that can do just that.

Assistant Professor Qiming Wang works in the world of 3D printed materials, creating new functions for a variety of purposes, from flexible electronics to sound control. Now, working with Viterbi students Kunhao Yu, An Xin, and Haixu Du, and University of Connecticut Assistant Professor Ying Li, they have made a new material that can be manufactured quickly and is able to repair itself if it becomes fractured or punctured. This material could be game-changing for industries like shoes, tires, soft robotics, and even electronics, decreasing manufacturing time while increasing product durability and longevity.

The material is manufactured using a 3D printing method that uses photopolymerization. This process uses light to solidify a liquid resin in a desired shape or geometry. To make it self-healable, they had to dive a little deeper into the chemistry behind the material.

Read more

One of the research’s lead investigators, Michael Hill, said in a press release, “We envision this new technique as a low-cost office procedure done under local anesthesia. The whole process would take about five minutes.”

While currently in the process of arranging licensing for their procedure, the researchers are already looking toward using it with other collagen tissue such as tendons, and even corneas for the correction of vision issues. In animal tests, they’ve already had some success with reshaping a cornea using a 3D-printed contact lens painted with electrodes and to which they applied electrical current to soften the cornea. This is especially exciting due to the structure of its collagen fibers. Says Hill during the presentation, “It turns out that in order to remain transparent, the [layers of] collagen fibers are all perfectly aligned.” Molecular surgery allows correction of the cornea without disrupting that required layering.

Read more

As 3D printing evolves and changes manufacturing, no sector will be left untouched—including rocket-building. Using the world’s largest 3D metal printer and Dell technology, Relativity Space will streamline the rocket-building process and make space exploration faster and more accessible. Watch how this revolutionary startup is partnering with Dell to take a leading spot in the race to space.

Read more

Traditional surgery to reshape a nose or ear entails cutting and suturing, sometimes followed by long recovery times and scars. But now, researchers have developed a “molecular surgery” process that uses tiny needles, electric current and 3D-printed molds to quickly reshape living tissue with no incisions, scarring or recovery time. The technique even shows promise as a way to fix immobile joints or as a noninvasive alternative to laser eye surgery.

The researchers will present their results today at the American Chemical Society (ACS) Spring 2019 National Meeting & Exposition.

“We envision this as a low-cost office procedure done under local anesthesia,” says Michael Hill, Ph.D., one of the project’s principal investigators, who will discuss the work at the meeting. “The whole process would take about five minutes.”

Read more