БЛОГ

Archive for the ‘bioengineering’ category: Page 91

May 14, 2021

Episode 50 — Bioengineering Our Human Species To Reach The Stars

Posted by in categories: bioengineering, genetics, space

Great new episode with renowned geneticist Christopher Mason who talks about his book on how we will need to bioengineer our own species in order to expand beyond our solar system.


Geneticist Christopher Mason chats about his new book, “The Next 500 Years: Engineering Life to Reach New Worlds” from MIT Press. We discuss both the nuts and bolts and the philosophy driving our expansion offworld. Mason’s goal is to preserve our species by expanding to an Earth 2.0 in order to avoid our star’s own Red Giant endgame.

Continue reading “Episode 50 --- Bioengineering Our Human Species To Reach The Stars” »

May 14, 2021

Dr. Jonna Mazet, DVM, MPVM, PhD — One Health — Can We Immunize The World Against Future Pandemics?

Posted by in categories: bioengineering, biotech/medical, education, government, health, policy

Can We Immunize The World Against Future Pandemics? Dr Jonna Mazet, DVM, MPVM, PhD, UC Davis School of Veterinary Medicine — Global Virome Project.


Dr. Jonna Mazet, DVM, MPVM, PhD, is a Professor of Epidemiology and Disease Ecology at the UC Davis School of Veterinary Medicine, Founding Executive Director of the UC Davis One Health Institute, and Vice Provost For Grand Challenges At UC Davis.

Continue reading “Dr. Jonna Mazet, DVM, MPVM, PhD — One Health — Can We Immunize The World Against Future Pandemics?” »

May 11, 2021

A New Gene Editing Tool Could Rival CRISPR, and Makes Millions of Edits at Once

Posted by in categories: bioengineering, biotech/medical

First discovered in 1984, retrons are floating ribbons of DNA in some bacteria cells that can be converted into a specific type of DNA—a single chain of DNA bases dubbed ssDNAs (yup, it’s weird). But that’s fantastic news for gene editing, because our cells’ double-stranded DNA sequences become impressionable single chains when they divide. Perfect timing for a retron bait-and-switch.

Normally, our DNA exists in double helices that are tightly wrapped into 23 bundles, called chromosomes. Each chromosome bundle comes in two copies, and when a cell divides, the copies separate to duplicate themselves. During this time, the two copies sometimes swap genes in a process called recombination. This is when retrons can sneak in, inserting their ssDNA progeny into the dividing cell instead. If they carry new tricks—say, allowing a bacteria cell to become resistant against drugs—and successfully insert themselves, then the cell’s progeny will inherit that trait.

Because of the cell’s natural machinery, retrons can infiltrate a genome without cutting it. And they can do it in millions of dividing cells at the same time.

May 11, 2021

Tiny, wireless, injectable chips use ultrasound to monitor body processes

Posted by in categories: bioengineering, biotech/medical, computing

Widely used to monitor and map biological signals, to support and enhance physiological functions, and to treat diseases, implantable medical devices are transforming healthcare and improving the quality of life for millions of people. Researchers are increasingly interested in designing wireless, miniaturized implantable medical devices for in vivo and in situ physiological monitoring. These devices could be used to monitor physiological conditions, such as temperature, blood pressure, glucose, and respiration for both diagnostic and therapeutic procedures.

To date, conventional implanted electronics have been highly volume-inefficient—they generally require multiple chips, packaging, wires, and external transducers, and batteries are often needed for . A constant trend in electronics has been tighter integration of electronic components, often moving more and more functions onto the integrated circuit itself.

Researchers at Columbia Engineering report that they have built what they say is the world’s smallest single– system, consuming a total volume of less than 0.1 mm3. The system is as small as a dust mite and visible only under a microscope. In order to achieve this, the team used ultrasound to both power and communicate with the device wirelessly. The study was published online May 7 in Science Advances.

May 9, 2021

My Theory & The Future Of Aging | Prof George Church Interview Series Episode 1

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics, life extension

7:01 they talk about Church’s comments of ending aging by 2030. Also this appears to be a part one.


In this video Professor Church talks about his theory of aging and touches on his ideas on the future of aging.

Continue reading “My Theory & The Future Of Aging | Prof George Church Interview Series Episode 1” »

May 9, 2021

New technique can print life-like organ models in minutes

Posted by in categories: 3D printing, bioengineering, biotech/medical, genetics, government

I still don’t get how there seems to be No organized effort anywhere to achieve the ability to 3D print a perfect genetic match of all organs by 2025 — 2030. You would think some government somewhere would want to work round the clock on this.


NIBIB-funded engineers at the University of Buffalo have fine-tuned the use of stereolithography for 3D printing of organ models that contain live cells. The new technique is capable of printing the models 10–50 times faster than the industry standard-;in minutes instead of hours-; a major step in the quest to create 3D-printed replacement organs.

Conventional 3D printing involves the meticulous addition of material to the 3D model with a small needle that produces fine detail but is extremely slow —taking six or seven hours to print a model of a human part, such as a hand, for instance. The lengthy process causes cellular stress and injury inhibiting the ability to seed the tissues with live, functioning cells.

Continue reading “New technique can print life-like organ models in minutes” »

May 4, 2021

Professor Dr. Mark Tester — Center for Desert Agriculture — KAUST — Red Sea Farms — Saudi Arabia

Posted by in categories: bioengineering, biological, food, genetics, sustainability

Unlocking The Potential Of Salt and Drought Tolerant Crops And Seawater Agriculture — Professor Dr. Mark Tester — Center for Desert Agriculture, King Abdullah University of Science and Technology; Co-founder & CSO, Red Sea Farms.


Professor Dr. Mark Tester is Professor, Plant Science, and Associate Director, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, of King Abdullah University of Science and Technology (KAUST) in Saudi Arabia.

Continue reading “Professor Dr. Mark Tester — Center for Desert Agriculture — KAUST — Red Sea Farms — Saudi Arabia” »

May 1, 2021

Targeting tumors with nanoworms

Posted by in categories: bioengineering, biotech/medical, chemistry, nanotechnology, supercomputing

Getting closer.


Drugs and vaccines circulate through the vascular system reacting according to their chemical and structural nature. In some cases, they are intended to diffuse. In other cases, like cancer treatments, the intended target is highly localized. The effectiveness of a medicine —and how much is needed and the side effects it causes —are a function of how well it can reach its target.

“A lot of medicines involve intravenous injections of drug carriers,” said Ying Li, an assistant professor of mechanical engineering at the University of Connecticut. “We want them to be able to circulate and find the right place at the right time and to release the right amount of drugs to safely protect us. If you make mistakes, there can be terrible side effects.”

Continue reading “Targeting tumors with nanoworms” »

May 1, 2021

Harvard scientists create gene-editing tool that could rival CRISPR

Posted by in categories: bioengineering, biotech/medical, genetics

Harvard’s Wyss Institute has created a new gene-editing tool that enable scientist to perform millions of genetic experiments simultaneously.


Researchers from the Harvard’s Wyss Institute for Biologically Inspired Engineering have created a new gene-editing tool that can enable scientists to perform millions of genetic experiments simultaneously. They’re calling it the Retron Library Recombineering (RLR) technique, and it uses segments of bacterial DNA called retrons that can produce fragments of single-stranded DNA.

When it comes to gene editing, CRISPR-Cas9 is probably the most well-known technique these days. It’s been making waves in the science world in the past few years, giving researchers the tool they need to be able to easily alter DNA sequences. It’s more accurate than previously used techniques, and it has a wide variety of potential applications, including life-saving treatments for various illnesses.

Continue reading “Harvard scientists create gene-editing tool that could rival CRISPR” »

Apr 30, 2021

Move over CRISPR, the retrons are coming

Posted by in categories: bioengineering, biotech/medical, genetics

While the CRISPR-Cas9 gene editing system has become the poster child for innovation in synthetic biology, it has some major limitations. CRISPR-Cas9 can be programmed to find and cut specific pieces of DNA, but editing the DNA to create desired mutations requires tricking the cell into using a new piece of DNA to repair the break. This bait-and-switch can be complicated to orchestrate, and can even be toxic to cells because Cas9 often cuts unintended, off-target sites as well.

Alternative gene editing techniques called recombineering instead perform this bait-and-switch by introducing an alternate piece of DNA while a cell is replicating its genome, efficiently creating without breaking DNA. These methods are simple enough that they can be used in many cells at once to create complex pools of mutations for researchers to study. Figuring out what the effects of those mutations are, however, requires that each mutant be isolated, sequenced, and characterized: a time-consuming and impractical task.

Researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University and Harvard Medical School (HMS) have created a new gene editing tool called Retron Library Recombineering (RLR) that makes this task easier. RLR generates up to millions of mutations simultaneously, and “barcodes” mutant cells so that the entire pool can be screened at once, enabling massive amounts of data to be easily generated and analyzed. The achievement, which has been accomplished in , is described in a recent paper in PNAS.

Page 91 of 218First8889909192939495Last