БЛОГ

Archive for the ‘biotech/medical’ category: Page 2446

Feb 14, 2017

Promising New Technique Uses Stem Cells to fix Bone Damage

Posted by in category: biotech/medical

https://youtube.com/watch?v=Buf16_802kI

New work has demonstrated that bone injuries can be repaired using a sheet of a carbon compound that has photocatalytic characteristics, and combining it with stem cells derived from human bone marrow. These developments could lead to new treatments that can exert a powerful positive effect on skeletal fractures or periodontal disease. Check out the short video below that summarizes the findings in the report, which was published in the journal ACS Nano.

The scientists found that a chemical sheet made of carbon nitride, which absorbs red light, can support the growth of bone cells — osteogenic differentiation — because of the activation of a molecule that promotes gene expression. That molecule is a transcription factor called runt-related transcription factor 2 or Runx2. The absorption of red light and the emission of fluorescence by the carbon nitride sheets accelerates bone regeneration. It seems that when the sheets are exposed to red light in liquid conditions where cells are growing, electrons are released, which stimulates the accumulation of calcium in cell cytoplasm.

Continue reading “Promising New Technique Uses Stem Cells to fix Bone Damage” »

Feb 14, 2017

Nanoparticles Deliver CRISPR/Cas9 Genetic Editor Safely Into Cells

Posted by in categories: bioengineering, biotech/medical, genetics, nanotechnology

CRISPR/Cas9, a powerful gene editing technique that has already been used in a human, is thought by many as a “cut and paste” for DNA in living organisms. While in a sense that is what happens, delivering the ribonucleoprotein that does the genetic editing and the RNA that hones in on the target, into the cellular nucleus without being damaged is a challenge. That is why the efficiency of successful edits remains very low. Researchers at University of Massachusetts Amherst have now come up with nanoparticles that protect the protein and RNA as they’re brought to their work site.

The nanoparticles are engineered around their cargo and have shown a 90% success rate of getting the cargo into the nucleus, and a 30% editing efficiency, which is “remarkable” according to the researchers. So far the team has tested their technique on cultured cells, but they’re already working on trying the same in laboratory animals. As part of their research, they developed a novel way of tracking the Cas9 protein inside the cells, something that will certainly help other scientists in this area.

“By finely tuning the interactions between engineered Cas9En protein and nanoparticles, we were able to construct these delivery vectors. The vectors carrying the Cas9 protein and sgRNA come into contact with the cell membrane, fuse, and release the Cas9:sgRNA directly into the cell cytoplasm,” in a statement said Vincent Rotello, lead author of the study in ACS Nano. “Cas9 protein also has a nuclear guiding sequence that ushers the complex into the destination nucleus. The key is to tweak the Cas9 protein,” he adds. “We have delivered this Cas9 protein and sgRNA pair into the cell nucleus without getting it trapped on its way. We have watched the delivery process live in real time using sophisticated microscopy.”

Continue reading “Nanoparticles Deliver CRISPR/Cas9 Genetic Editor Safely Into Cells” »

Feb 14, 2017

Turning up the heat for perfect (nano)diamonds

Posted by in categories: biotech/medical, nanotechnology, quantum physics

Quantum mechanics, the physics that governs nature at the atomic and subatomic scale, contains a host of new physical phenomena to explore quantum states at the nanoscale. Though tricky, there are ways to exploit these inherently fragile and sensitive systems for quantum sensing. One nascent technology in particular makes use of point defects, or single-atom misplacements, in nanoscale materials, such as diamond nanoparticles, to measure electromagnetic fields, temperature, pressure, frequency and other variables with unprecedented precision and accuracy.

Quantum sensing could revolutionize medical diagnostics, enable new drug development, improve the design of electronic devices and more.

For use in quantum sensing, the bulk nanodiamond crystal surrounding the point defect must be highly perfect. Any deviation from perfection, such as additional missing atoms, strain in the crystalline lattice of the diamond, or the presence of other impurities, will adversely affect the quantum behavior of the material. Highly perfect nanodiamonds are also quite expensive and difficult to make.

Read more

Feb 14, 2017

DARPA: We’re on cusp of merging human and machine

Posted by in categories: biotech/medical, cyborgs, information science, life extension, quantum physics, robotics/AI, security, wearables

This article does try to highlight what and where we are going with the merge of bio and technology. However, what has been shown to date is all very invasive as Quantum Biology has remained a gap in this development work until recently. Thanks to DARPA and others in the private sector who are working on technologies that leverages Quantum Biology principles to develop new integrated Biosystem technologies; we will see amazing work in cell circuitry and connectivity in areas of bio-security, BMI, prosthetics, immunology, anti-disease, reverse aging, etc.


These might sound like outlandish predictions, but DARPA’s Sanchez said it’s not as crazy as it might have sounded several years ago.

“Advancement of A.I. is making machines more powerful in the way they can understand everything from scientific papers to interpreting them and helping us solve big problems,” said Sanchez. “Another aspect to consider is our society [is] embracing things like wearables that… allow algorithms to analyze our physiology. Great examples of that are being able to monitor your sleep patterns and provide feedback on if you should change the time you go to bed or wake up in the morning.”

Continue reading “DARPA: We’re on cusp of merging human and machine” »

Feb 14, 2017

U.S. experts soften on DNA editing of human eggs, sperm, embryos

Posted by in categories: bioengineering, biotech/medical

By Julie Steenhuysen

CHICAGO (Reuters) — Powerful gene editing tools may one day be used on human embryos, eggs and sperm to remove genes that cause inherited diseases, according to a report by U.S. scientists and ethicists released on Tuesday.

The report from the National Academy of Sciences (NAS) and the National Academy of Medicine said scientific advances make gene editing in human reproductive cells “a realistic possibility that deserves serious consideration.”

Continue reading “U.S. experts soften on DNA editing of human eggs, sperm, embryos” »

Feb 14, 2017

The Island of Dr. Moreau For Real

Posted by in categories: biotech/medical, cyborgs, health, space, time travel

By Drs. David Niesel and Norbert Herzog, Medical Discovery News

H.G. Wells was a writer of fantastic science fiction during the 1890s. He is considered one of the fathers of science fiction and wrote novels whose stories remain popular today. He wrote about time travel in “The Time Machine”, about interplanetary conflict originally made popular by the Orson Wells’ “The War of the Worlds” and in “The Island of Dr. Moreau” he described beings that were part human and part animal. Two of the three remain pure science fiction but one is on the verge of becoming a reality. Do you know which one?

In August, 2016, the National Institutes of Health announced that it was lifting its ban on research that introduces stem cells from humans into animal embryos. Stem cells have the ability to evolve into any human cell and can grow into any human tissue. The goal of this type of research is to grow human tissues and eventually human replacement organs in animals. What an innovative way to improve upon transplantation medicine! But to realize this potential, we would create an organism that is part animal and part human! These hybrids are the stuff of ancient mythology. These mixtures of different animals are called chimeras after the mythical ancient Greek creature that was part lion, snake and goat. One goal of today’s research is to produce tissues and organs for experimentation that will improve our understanding of human disease. An alternative and longer term goal would be to produce organs directly for human transplantation.

Continue reading “The Island of Dr. Moreau For Real” »

Feb 14, 2017

Again on ageing as a disease: A rectification

Posted by in categories: biotech/medical, life extension

Ageing as a disease, take 2: Things I got wrong.


My previous post was somewhat confusing even to myself. To be completely frank, I think it was a little bit of a fuck-up. Several people have commented about it, for example on Reddit or Facebook, pointing out among the rest that whether or not ageing is a disease isn’t just semantics and it isn’t pointless. (To the people commenting on Facebook, I’d like to say that I’m sorry I didn’t reply to your comments, but for some reason I was stuck as ‘Rejuvenaction’ on those posts, and Pages don’t seem to be allowed to comment on group posts. I tried to switch to my personal account to no avail. I figured out a workaround, but at this point it’s a bit too late.)

What I meant to say is that arguing whether or not ageing is a medical condition is far less important than treating its root causes, and as long as we focused on this task, we could postpone the debate to a later time. The finer points of establishing if ageing fits the definition of ‘disease’ to the letter would waste precious time we could spend saving lives instead; we should definitely not wait until the issue has been settled before we start developing rejuvenation biotechnologies. (And we are not waiting at all, luckily.) However, classifying ageing as a disease is very important and not at all pointless, as Reason of FA! explained in this post. In a nutshell, if the ageing processes that lead to age-related diseases were considered pathological, research on how to interfere with them would likely receive more funding, and drugs that target ageing itself could be approved by the FDA.

Read more

Feb 14, 2017

Less is more: potential breakthrough for treating hypertension with ultra low-dose combinations

Posted by in categories: biotech/medical, health

Synergy is very important in medicine and sometimes old drugs have unexpected results when combined with others. Here we have a quad therapy that has had great results with hypertension.


A small but clinically important trial of a new ultra-low dose four-in-one pill to treat high blood pressure has produced remarkable results.

Continue reading “Less is more: potential breakthrough for treating hypertension with ultra low-dose combinations” »

Feb 13, 2017

New drive for nanorobots in biological fluids

Posted by in categories: biotech/medical, nanotechnology

Nice.


Nanorobots and other mini-vehicles might be able to perform important services in medicine one day – for example, by conducting remotely-controlled operations or transporting pharmaceutical agents to a desired location in the body. However, to date it has been hard to steer such micro- and nanoswimmers accurately through biological fluids such as blood, synovial fluid or the inside of the eyeball.

Researchers at the Max Planck Institute for Intelligent Systems in Stuttgart are now presenting two new approaches for constructing propulsion systems for tiny floating bodies. In the case of one motor, the propulsion is generated by bubbles which are caused to oscillate by ultrasound (Applied Physics Letters, “Wireless actuation with functional acoustic surfaces”). With the other, a current caused by the product of an enzymatic reaction propels a nanoswimmer (JACS, “Bubble-Free Propulsion of Ultrasmall Tubular Nanojets Biocatalytic Reactions”).

Continue reading “New drive for nanorobots in biological fluids” »

Feb 13, 2017

Luminescence switchable carbon nanodots follow intracellular trafficking and drug delivery

Posted by in categories: bioengineering, biotech/medical, chemistry, nanotechnology

‘Caged’ non-fluorescent carbon dot enters the cancer cell, loses its caging and lights up. Credit: University of Illinois.

Tiny carbon dots have, for the first time, been applied to intracellular imaging and tracking of drug delivery involving various optical and vibrational spectroscopic-based techniques such as fluorescence, Raman, and hyperspectral imaging. Researchers from the University of Illinois at Urbana-Champaign have demonstrated, for the first time, that photo luminescent carbon nanoparticles can exhibit reversible switching of their optical properties in cancer cells.

“One of the major advantages of these agents are their strong intrinsic optical sensitivity without the need for any additional dye/fluorophore and with no photo-bleaching issues associated with it,” explained Dipanjan Pan, an assistant professor of bioengineering and the leader of the study. “Using some elegant nanoscale surface chemistry, we created a molecular ‘masking’ pathway to turn off the fluorescence and then selectively remove the mask leading to regaining the brightness.

Read more