Toggle light / dark theme

How does the human brain work and how is it different from computers? If you think this is too complex to explain in a few minutes, you will be surprised. In this energetic and insightful talk, neuro-scientist Dr. Henning Beck gives insights into thought processes and tells you how you can create new ideas.

Dr. Henning Beck, neuroscientist and author, supports businesses to use brain-based approaches in order to develop innovative and efficient workflows. He studied biochemistry in Tübingen from 2003 to 2008. After his diploma thesis, he started his research at the Hertie Institute for Clinical Brain Research and intensified his work at the Institute of Physiological Chemistry at the University of Ulm. Supported by a PhD scholarship granted by the Hertie Foundation he did his doctorate at the Graduate School of Cellular & Molecular Neuroscience in Tübingen. He expanded his scientific expertise by an International Diploma in Project Management at the University of California, Berkeley in 2013. Until 2014, he worked for start-ups in the San Francisco Bay Area to develop creative workspace designs and advanced communication styles based on neuroscientific principles.

This talk was given at a TEDx event using the TED conference format but independently organized by a local community.

Recently, researchers have been incorporating graphene-based materials into superconducting quantum computing devices, which promise faster, more efficient computing, among other perks. Until now, however, there’s been no recorded coherence for these advanced qubits, so there’s no knowing if they’re feasible for practical quantum computing.

In a paper published today in Nature Nanotechnology, the researchers demonstrate, for the first time, a coherent qubit made from graphene and exotic materials. These materials enable the qubit to change states through voltage, much like transistors in today’s traditional computer chips — and unlike most other types of superconducting qubits. Moreover, the researchers put a number to that coherence, clocking it at 55 nanoseconds, before the qubit returns to its ground state.

The work combined expertise from co-authors William D. Oliver, a physics professor of the practice and Lincoln Laboratory Fellow whose work focuses on quantum computing systems, and Pablo Jarillo-Herrero, the Cecil and Ida Green Professor of Physics at MIT who researches innovations in graphene.

There are 45+ papers from Amazon scientists and researchers on display at the annual meeting of the North American chapter of the Association for Computational … See more.


The breadth and originality of Amazon’s natural-language-processing research are on display at the annual meeting of the North American chapter of the Association for Computational Linguistics.

Circa 2021


Suppose you are trying to transmit a message. Convert each character into bits, and each bit into a signal. Then send it, over copper or fiber or air. Try as you might to be as careful as possible, what is received on the other side will not be the same as what you began with. Noise never fails to corrupt.

In the 1940s, computer scientists first confronted the unavoidable problem of noise. Five decades later, they came up with an elegant approach to sidestepping it: What if you could encode a message so that it would be obvious if it had been garbled before your recipient even read it? A book can’t be judged by its cover, but this message could.

They called this property local testability, because such a message can be tested super-fast in just a few spots to ascertain its correctness. Over the next 30 years, researchers made substantial progress toward creating such a test, but their efforts always fell short. Many thought local testability would never be achieved in its ideal form.

University of Chicago physicists have invented a “quantum flute” that, like the Pied Piper, can coerce particles of light to move together in a way that’s never been seen before.

Described in two studies published in Physical Review Letters and Nature Physics, the breakthrough could point the way towards realizing or new forms of error correction in quantum computers, and observing quantum phenomena that cannot be seen in nature.

Assoc. Prof. David Schuster’s lab works on —the quantum equivalent of a computer bit—which tap the strange properties of particles at the atomic and sub-atomic level to do things that are otherwise impossible. In this experiment, they were working with particles of light, known as photons, in the microwave spectrum.

NVIDIA’s next-gen Lovelace graphics cards are rumored to feature considerably higher TGPs than their predecessors. We’re looking at power draws of up to 600W for the RTX 4090 and even more for the RTX 4,090 Ti. This is despite the fact that these chips will be fabbed on TSMC’s 4nm N4 process which is easily one of the most efficient nodes on the planet. The excessive power consumption won’t be for nothing though, and the RTX 4,090 (based on the AD102 die) will pack around 16K FP32 cores.

The AD102 die will get a haircut before going into the RTX 4,090, dropping the core count from 18,432 to 16,384. This means that a few of the SMs, TPCs, and GPCs along with the L2 cache will also be axed. As for the clocks, Kopite7kimi states that we can expect core boost clocks well over 2.8GHz.

We might get a GPU with 16,384 pulsating cores running at a whopping 3GHz and custom liquid-cooled models clocked even higher. The more accessible RTX 4,080 featuring the AD103 die should pack around 10,000 cores and boosts exceeding 3GHz. The peak power draw should stay in the 400-450W range.