Toggle light / dark theme

How Apple’s M2 chip builds on the M1 to take on Intel and AMD.


The M1 is a great chip. Essentially an “X” variant of the A14 chip, it takes the iPhone and iPad processor and doubles the high-performance CPU cores, GPU cores, and memory bandwidth. The M1 chip is so good it’s equally amazing for tablets and thin-and-light laptops as it is for desktops, easily outperforming any competing chip with similar power draw and offering similar performance to processors that use at least twice as much energy.

Now a year and a half later, and after delivering three more powerful variants of the M1 (M1 Pro, M1 Max, and M1 Ultra), it’s time for the next generation. Announced at WWDC and appearing first in the new MacBook Air and 13-inch MacBook Pro, the M2 is essentially the system-on-chip we predicted it would be: what the M1 is to the A14, the M2 is to the A15. It’s made of 20 billion transistors, 25 percent more than M1, and while it’s still built using a 5nm manufacturing process, it’s a new enhanced “second-generation” 5nm process.

Here are the most significant ways the M2 is improved over the M1.

The Ingenuity chopper on Mars has lost an instrument that helps it navigate. Flight controllers have found a work-around.


Things are getting challenging for the Ingenuity helicopter on Mars. The latest news from Håvard Grip, its chief pilot, is that the “Little Chopper that Could” has lost its sense of direction thanks to a failed instrument. Never mind that it was designed to make only a few flights, mostly in Mars spring. Or that it’s having a hard time staying warm now that winter is coming. Now, one of its navigation sensors, called an inclinometer, has stopped working. It’s not the end of the world, though. “A nonworking navigation sensor sounds like a big deal – and it is – but it’s not necessarily an end to our flying at Mars,” Grip wrote on the Mars Helicopter blog on June 6. It turns out that the controllers have options.

Like other NASA planetary missions, Ingenuity sports a fair amount of redundancy in its systems. It has an inertial measurement unit (IMU) that measures accelerations and angular rates of ascent and descent in three directions. In addition, there’s a laser rangefinder that measures the distance to the ground. Finally, the chopper has a navigation camera. It gives visual evidence of where Ingenuity is during flight or on the ground. An algorithm takes data from these instruments and uses it during flight. But, it needs to know the chopper’s roll and pitch attitude, and that’s what the inclinometer supplies.

Since it failed, the team had to find a way to impersonate the inclinometer. So, they applied a software patch to the code running on Ingenuity’s flight computer. It intercepts what Grip describes as “garbage packets” of data and replaces them with good data. Essentially, the flight controllers tricked the copter’s navigation algorithms into thinking that the data they have came from the inclinometer.

we will be bringing you extracts from 9 trailblazer profiles from our new Neurotech report – dynamic and innovative companies we feel are driving this exciting space. Each profile includes a flagship product deep dive which offers a forensic consideration of product development, efficacy, target market, channels to market, success factors, IP and funding.

AE was born of the vision to increase human agency for end users through the technology the group develops for their partners and their wholly-owned and operated skunkworks companies. Running a highly collaborative agile process, these efforts are extended by investing heavily in the brain computer interface (BCI) space. BCI represents, to AE, the pinnacle of agency increasing tech with massive implications for users and the whole of humanity.

Electro-optic modulators, which control aspects of light in response to electrical signals, are essential for everything from sensing to metrology and telecommunications. Today, most research into these modulators is focused on applications that take place on chips or within fiber optic systems. But what about optical applications outside the wire and off the chip, like distance sensing in vehicles?

Current technologies to modulate light in are bulky, slow, static, or inefficient. Now, researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), in collaboration with researchers at the department of Chemistry at the University of Washington, have developed a compact and tunable electro-optic for free space applications that can modulate light at gigahertz speed.

“Our work is the first step toward a class of free-space electro-optic modulators that provide compact and efficient intensity modulation at gigahertz speed of free-space beams at telecom wavelengths,” said Federico Capasso, Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering, senior author of the paper.

Circa 2019


Mark Lawrence (link is external), a postdoctoral scholar in materials science and engineering at Stanford, has moved a step closer to this future with a scheme to make a photon diode — a device that allows light to only flow in one direction — which, unlike other light-based diodes, is small enough for consumer electronics.

Quantum sensing is poised to revolutionize today’s sensors, significantly boosting the performance they can achieve. More precise, faster, and reliable measurements of physical quantities can have a transformative effect on every area of science and technology, including our daily lives. However, most of these schemes are based on special entangled or squeezed states of light or matter that are difficult to detect. It is a significantly challenging task to harness the full power of quantum-limited sensors and deploy them in real-world scenarios.

A team of physicists at the Universities of Bristol, Bath, and Warwick have found a way to operate mass manufacturable photonic sensors at the quantum limit. They have shown that it is possible to perform high-precision measurements of critical physical properties without the need for sophisticated quantum states of light and detection schemes.

Using ring resonators is a key to this breakthrough discovery. The ring resonators are tiny racetrack structures that guide light in a loop and maximize its interaction with the sample under study. Importantly, ring resonators can be mass-produced in the same way chips in computers and cell phones are.

A group of photonics researchers at Tampere University have introduced a novel method to control a light beam with another beam through a unique plasmonic metasurface in a linear medium at ultra-low power. This simple linear switching method makes nanophotonic devices such as optical computing and communication systems more sustainable, requiring low intensity of light.

A group of photonics researchers at Tampere University have introduced a novel method to control a light beam with another beam through a unique plasmonic metasurface in a linear medium at ultra-low power. This simple linear switching method makes nanophotonic devices such as optical computing and communication systems more sustainable, requiring low intensity of light.

All– is the modulation of signal light due to control light in such a way that it possesses the on/off conversion function. In general, a can be modulated with another intense laser beam in the presence of a nonlinear medium.

The switching method developed by the researchers is fundamentally based on the quantum optical phenomenon known as Enhancement of Index of Refraction (EIR).

When Heroes (now streaming on Peacock!) hit the airwaves in September of 2006, few characters were as immediately beloved as the appropriately named Hiro Nakamura. Granted the ability to manipulate space-time, Hiro could not only slow down, speed up, and stop time, he could also teleport from one place to another. That’s a useful skill if you need to get to a specific point in time and space to fight an evil brain surgeon or prevent the end of the world. It’s also useful if you want to build the quantum internet.

Researchers at QuTech — a collaboration between Delft University of Technology and the Netherlands Organization for Applied Scientific Research — recently took a big step toward making that a reality. For the first time, they succeeded in sending quantum information between non-adjacent qubits on a rudimentary network. Their findings were published in the journal Nature.

While modern computers use bits, zeroes, and ones, to encode information, quantum computers us quantum bits or qubits. A qubit works in much the same way as a bit, except it’s able to hold both a 0 and a 1 at the same time, allowing for faster and more powerful computation. The trouble begins when you want to transmit that information to another location. Quantum computing has a communications problem.