Toggle light / dark theme

Dark matter was likely the starting ingredient for brewing up the very first galaxies in the universe. Shortly after the Big Bang, particles of dark matter would have clumped together in gravitational “halos,” pulling surrounding gas into their cores, which over time cooled and condensed into the first galaxies.

Although dark matter is considered the backbone to the structure of the universe, scientists know very little about its nature, as the particles have so far evaded detection.

Now scientists at MIT, Princeton University, and Cambridge University have found that the early universe, and the very first galaxies, would have looked very different depending on the nature of dark matter. For the first time, the team has simulated what early galaxy formation would have looked like if dark matter were “fuzzy,” rather than cold or warm.

After counting all the normal, luminous matter in the obvious places of the universe – galaxies, clusters of galaxies and the intergalactic medium – about half of it is still missing. So not only is 85 percent of the matter in the universe made up of an unknown, invisible substance dubbed “dark matter”, we can’t even find all the small amount of normal matter that should be there.

This is known as the “missing baryons” problem. Baryons are particles that emit or absorb light, like protons, neutrons or electrons, which make up the matter we see around us. The baryons unaccounted for are thought to be hidden in filamentary structures permeating the entire universe, also known as “the cosmic web”.

But this structure is elusive and so far we have only seen glimpses of it. Now a new study, published in Science, offers a better view that will enable us to help map what it looks like.

Click on photo to start video.

What about what happens when two black holes collide?

Goddard Scientist Roopesh Ojha sheds light on the supermassive and stellar mass black holes within our galaxy. Scientists believe one supermassive black hole exists at the center of every galaxy and that many, many more of their much smaller siblings, the stellar mass black holes, surround it.

#Blackholeweek #Astrophysics #NASA

Some of the most distant rocks in our solar system act in a way that suggests there’s some massive object out there we haven’t been able to see. A planet? Maybe. But why not a small black hole?

That’s a scenario a pair of scientists describe in a new paper. Of course, they recognize that a planet is more likely than an ancient black hole unlike any we’ve directly observed. But they simply want astronomers to think creatively while hunting for whatever this hypothetical object, often called Planet Nine, might be.