БЛОГ

Archive for the ‘materials’ category: Page 273

Oct 26, 2016

New metamaterial shrinks when the heat is on

Posted by in categories: 3D printing, materials

It’s one of the basic facts of science: Heat something and it expands. But a team of US scientists has gone counterintuitive and invented a 3D-printed material that shrinks when heated. Developed as part of DARPA’s program to study materials with controlled microstructure architecture, the lightweight metamaterial exhibits what the researchers call “negative thermal expansion.”

Metamaterials are one of those things that come out of the lab with an air of enchantment about them. Basically, they’re made up of composite materials, like metals, plastics, or ceramics, engineered into repeating, microscopic structures. Depending on how these structures are designed, they can give the metamaterial properties that aren’t found in nature and may not even be derived from the source materials themselves.

The study by a team from the Lawrence Livermore National Laboratory’s (LLNL) Additive Manufacturing Initiative in partnership with the University of Southern California, MIT, and the University of California, Los Angeles, used a 3D printing process called projection microstereolithograpy to form a polymer and a polymer/copper composite into a highly complex 3D bi-material microlattice structure. To put it more simply, they printed a material made of two substances to form a pattern by printing out the polymer in a layer, cleaning the surface to avoid contamination, then printing the polymer/copper composite, then repeating.

Read more

Oct 25, 2016

‘Atomic sandwich’ computing material uses 100 times less energy

Posted by in categories: computing, materials

New magnetoelectric multiferroic material operates at 100 times lower power (credit: Julia A. Mundy/Nature)

Lawrence Berkeley National Laboratory scientists have developed a new “magnetoelectric multiferroic*” material that could lead to a new generation of computing devices with more computing power while consuming a fraction of the energy that today’s electronics require.

Read more

Oct 25, 2016

Vantablack, the Darkest Material Ever Made, Absorbs 99.965% Of Light

Posted by in category: materials

Read more

Oct 23, 2016

Why Space Elevators Could Be the Future of Space Travel

Posted by in categories: materials, space travel

In Brief:

  • Expensive, unsustainable rockets have served as our primary means to exit Earth, but space elevators present a cheaper way to enter outer space.
  • Although new materials are needed, space elevator missions are in motion and we could see the first elevator constructed in the next several decades.

Getting into space with rockets is ridiculously expensive. A NASA Inspector General report says the agency will pay Russia $491.2 million to send six astronauts into space in 2018. That’s almost $82 million a seat.

Read more

Oct 18, 2016

Graphene Enables Battery Breakthough Says Fisker

Posted by in categories: materials, nanotechnology

Henrik Fisker’s new battery company — Fisker Nanotech — says it has found a way to combine supercapacitors and batteries and produce them inexpensively.

Read more

Oct 18, 2016

Graphene and Quantum Dots Come Together to Create “Hybrid” Tech

Posted by in categories: materials, quantum physics

In Brief:

This new development in photoelectronics makes the technology more cost (and quantum) efficient. This opens ways for graphene to be further integrated in the field of photoelectronics.

EICREA professors Frank Koppens and Gerasimos Konstantatos led researchers in the ICFO in developing a hybrid photodetector that is better-performing in terms of speed, accuracy and range, and operates in the visible spectrum, near infrared (NIR) and short-wave infrared (SWIR), with wavelengths ranging from 400 to 3000 nm.

Continue reading “Graphene and Quantum Dots Come Together to Create ‘Hybrid’ Tech” »

Oct 18, 2016

Antimatter and the Sail

Posted by in categories: materials, space travel

Interesting!


An antimatter probe to a nearby star? The idea holds enormous appeal, given the colossal energies obtained when normal matter annihilates in contact with its antimatter equivalent. But as we’ve seen through the years on Centauri Dreams, such energies are all but impossible to engineer. Antimatter production is infinitesimal, the by-product of accelerators designed with a much different agenda. Moreover, antimatter storage is hellishly difficult, so that maintaining large quantities in a stable condition requires multiple breakthroughs.

All of which is why I became interested in the work Gerald Jackson and Steve Howe were doing at Hbar Technologies. Howe, in fact, became a key source when I put together the original book from which this site grew. This was back in 2002–2003, and I was captivated with the idea of what could be called an ‘antimatter sail.’ The idea, now part of a new Kickstarter campaign being launched by Jackson and Howe, is to work with mere milligrams of antimatter, allowing antiprotons to be released from the spacecraft into a uranium-enriched, five-meter sail.

Continue reading “Antimatter and the Sail” »

Oct 8, 2016

Print-on-demand bone could quickly mend major injuries

Posted by in category: materials

Material is flexible, cheap, and easy to produce.

Read more

Oct 7, 2016

Glow-in-the-dark bike path lights the way in Poland

Posted by in categories: innovation, materials

Two years ago, Studio Roosegaarde created a glow-in-the-dark bike path in Eindhoven, Netherlands, helping to light the route in a exciting way. Inspired by that, a materials technology center in Lidzbark Warminski, Poland, has followed suit, with equally dazzling results.

The materials tech center, TPA Gesellschaft für Qualitätssicherung und Innovation (TPAQI), tells New Atlas that it first drew attention to the Eindhoven bike path at a local road forum event. The underlying concept was floated as a potential option for creating something that would reflect the beauty of the surrounding landscape.

Work began about a year ago, with lab tests into how the glowing effect would be created. A variety of different materials and colors were tested, with the aim of creating something that would both look great and that would increase safety for cyclists and pedestrians.

Continue reading “Glow-in-the-dark bike path lights the way in Poland” »

Oct 5, 2016

New Shock-Absorbing Material Could Help Robots Take a Real Beating

Posted by in categories: materials, robotics/AI

The technique involves embedding different levels of solid and liquid in order to customize the elasticity. Adding more liquid makes the material softer and more elastic. This technique allows the printer to exactly customize the elasticity of the print, and even of different areas within the print.

These programmable materials can help reduce wear and tear on moving parts by damping shocks and reducing vibrations. They can also help make robots easier to control by making movements more precise. This method could even have other applications such as in shock-absorbing running shoes and headgear.

Source: MIT News

Continue reading “New Shock-Absorbing Material Could Help Robots Take a Real Beating” »