Toggle light / dark theme

As I stated earlier, another example where we will see a convergence of tech and bio especially as we emerge QC forward and synbio technology such as gene/ cell circuitry. My guess when we mature these fields along with minerals like diamonds/ gem crystalized formation and their use in QC tech, we will began to wonder why we didn’t figure this out sooner.


When Edward Boyden was helping develop a tool to turn neurons on and off with light at Stanford a decade ago, he had a strong feeling it would spread far and wide. Even so, he’s been surprised by how quickly its fame has come.

“What I hadn’t quite anticipated was how fast it would take off,” said Boyden, who now leads the MIT Media Lab’s synthetic neurobiology research group. “It was almost as if the field was ready for the technology.”

It certainly was. On Sunday, Boyden and Stanford neuroscientist Dr. Karl Deisseroth, whose lab Boyden worked in, each received $3 million Breakthrough Prizes for their work on optogenetics.

Excellent read for the new year.


We’re all familiar with the concept of sports coaching and personal trainers to help people achieve peak fitness, but what about the idea of a mind coach to help you reach your mental potential?

Some people are now turning to mind training to achieve their goals and see doing “inner work” as one important factor of success.

Sydney performance coach Jacob Galea has been working with clients for 10 years to strengthen their mental capacity and believes having a good life coach or mentor can help.

Another example where we will see a convergence of tech and bio especially as we emerge QC forward and synbio technology such as gene/ cell circuitry. We are finding so many synergies between Quantum and bio including the brain/ neuro networking, cell technology, human framework and pathways, etc. My guess when we mature these fields along with the minerals fiend we will began to wonder why we didn’t figure this out sooner.


New technique illuminates role of previously inaccessible proteins involved in health and disease.

Read more

My grandparents taught me the importance of a power nap; and it does help.


We’re not sure what the boss would have to say about it if you suddenly downed tools and made a decision to have a little sleep, but new research has found that taking an hour’s nap after lunch can have a number of health benefits, including preventing brain ageing.

The study conducted among the older Chinese men by a team of worldwide researchers concentrated mainly on post-lunchtime napping and its impact on the health of elderly people.

Do you hesitate to take a sleep after having your lunch, now you should not.

This kit by Royal College of Art graduate Heeju Kim uses sweets to recreate the tongue-tying experience of living with autism. Kim created three tools and a mobile application as part of the project, which is titled An Empathy Bridge for Autism.

A set of six awkwardly shaped lollipops and candies impede tongue movement in various ways. They make it hard for users to hold a conversation, conveying how unclear pronunciation has an impact on autistic individuals.

An augmented-reality headset is worn over the eyes and connects to a smartphone to alter the user’s perception of what’s in front of them. It restricts the view of their periphery, gives them double vision or obscures their focus with a patch of black.

Read more

In Brief

  • Peter Diamandis, founder and chairman of the XPRIZE Foundation, thinks the human species is headed for an evolutionary transformation.
  • The evolution of life has slowly unfolded over 3.5 billion years; but its pace has rapidly increased in recent years. Diamandis believes this heralds the next, exciting stages of human evolution.

In the next 30 years, humanity is in for a transformation the likes of which we’ve never seen before—and XPRIZE Foundation founder and chairman Peter Diamandis believes that this will give birth to a new species. Diamandis admits that this might sound too far out there for most people. He is convinced, however, that we are evolving towards what he calls “meta-intelligence,” and today’s exponential rate of growth is one clear indication.

In an essay for Singularity Hub, Diamandis outlines the transformative stages in the multi-billion year pageant of evolution, and takes note of what the recent increasing “temperature” of evolution—a consequence of human activity—may mean for the future. The story, in a nutshell, is this—early prokaryotic life appears about 3.5 billion years ago (bya), representing perhaps a symbiosis of separate metabolic and replicative mechanisms of “life;” at 2.5 bya, eukaryotes emerge as composite organisms incorporating biological “technology” (other living things) within themselves; at 1.5 bya, multicellular metazoans appear as eukaryotes are yoked together in cooperative colonies; and at 400 million years ago, vertebrate fish species emerge onto land to begin life’s adventure beyond the seas.

Read more

Interesting and I remember coming across similar research a few years ago.


Brain stimulation might sound like some Frankensteinian demonstration from a Victorian science fair. But in reality, it is a contemporary technique making a huge impact in neuroscience by addressing a longstanding limitation of traditional methods for investigating human brain function. Such techniques, like EEG and fMRI, can only be used to infer the effects of a stimulus or task on brain activity, and not vice versa. For example, a scientist might use EEG to study the effect of a task like arm movement on brain activity, but how can one study the effect of brain activity on arm movement?

Today, noninvasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) are offering alternatives to old paradigms. TMS can excite or suppress underlying brain tissue safely and ethically, allowing researchers to study causal relationships between brain circuits and behavior. What’s more, TMS may have therapeutic value in treating brain disorders such as depression.

Luv this.


Proteins are the workhorse molecules of life. Among their many jobs, they carry oxygen, build tissue, copy DNA for the next generation, and coordinate events within and between cells. Now scientists at the University of North Carolina at Chapel Hill have developed a method to control proteins inside live cells with the flick of a switch, giving researchers an unprecedented tool for pinpointing the causes of disease using the simplest of tools: light.

The work, led by Klaus Hahn and Nikolay Dokholyan and spearheaded by Onur Dagliyan, a graduate student in their labs, builds on the breakthrough technology known as optogenetics. The technique, developed in the early 2000s, allowed scientists, for the first time, to use light to activate and deactivate proteins that could turn brain cells on and off, refining ideas of what individual brain circuits do and how they relate to different aspects of behavior and personality.

Multiplexed optogenetic control, using Photo-inhibitable Vav2 (PA-Vav2) and Photo-inhibitable Rac1 (PI-Rac1) in the same cell.

Read more

There’s an old saying in neuroscience: “neurons that fire together wire together.” This means the more you run a neuro-circuit in your brain, the stronger that circuit becomes. This is why, to quote another old saw, “practice makes perfect”. The more you practice piano, or speaking a language, or juggling, the stronger those circuits get.

Scientists have known this for years. However, nowadays researchers learn another part of the truth: In order to learn something, even more important than practicing is the ability to unlearn, or to break down the old neural connections. This is called “synaptic pruning”.

Read more