БЛОГ

Archive for the ‘quantum physics’ category: Page 200

Sep 2, 2022

Surprise! Protons Contain a Subatomic Particle That’s Heavier Than the Proton Itself

Posted by in categories: particle physics, quantum physics

Protons are particles that exist in the nucleus of all atoms, with their number defining the elements themselves. Protons, however, are not fundamental particles. Rather, they are composite particles made up of smaller subatomic particles, namely two “up quarks” and one “down quark” bound together by force-carrying particles (bosons) called “gluons.”

This structure isn’t certain, however, and quantum physics suggests that along with these three quarks, other particles should be “popping” into and out of existence at all times, affecting the mass of the proton. This includes other quarks and even quark-antiquark pairs.

Indeed, the deeper scientists have probed the structure of the proton with high-energy particle collisions, the more complicated the situation has become. As a result, for around four decades, physicists have speculated that protons may host a heavier form of quark than up and down quarks called “intrinsic charm quarks,” but confirmation of this has been elusive.

Sep 1, 2022

Thermodynamics, Information & Consciousness in a Quantum Multiverse (Max Tegmark)

Posted by in categories: cosmology, neuroscience, quantum physics

Lecture from the mini-series “Cosmology & Quantum Foundations” from the “Philosophy of Cosmology” project. A University of Oxford and Cambridge Collaboration.

Sep 1, 2022

Quantum Computing: Race for the Next Manhattan Project | China In Focus

Posted by in categories: cybercrime/malcode, military, particle physics, quantum physics

⭕ Watch the full episode on EpochTV 👉https://ept.ms/UltimateWeapon_FULL

🔔 A Documentary by The Epoch Times, reveals the truth that has been hidden from the American people.👉https://ept.ms/3cTR1zF

Continue reading “Quantum Computing: Race for the Next Manhattan Project | China In Focus” »

Sep 1, 2022

A Wire on the Edge

Posted by in categories: particle physics, quantum physics

A cold-atom experiment suggests that interactions between particles can induce the coexistence of localized and extended states in a quantum wire.

Sep 1, 2022

Computational model could speed development of semiconductors useful in quantum applications

Posted by in categories: computing, particle physics, quantum physics

Researchers from North Carolina State University used computational analysis to predict how optical properties of semiconductor material zinc selenide (ZnSe) change when doped with halogen elements, and found the predictions were confirmed by experimental results. Their method could speed the process of identifying and creating materials useful in quantum applications.

Creating semiconductors with desirable properties means taking advantage of point defects—sites within a material where an atom may be missing, or where there are impurities. By manipulating these sites in the material, often by adding different elements (a process referred to as “doping”), designers can elicit different properties.

“Defects are unavoidable, even in ‘pure’ ,” says Doug Irving, University Faculty Scholar and professor of materials science and engineering at NC State. “We want to interface with those spaces via doping to change certain properties of a material. But figuring out which elements to use in doping is time and labor intensive. If we could use a to predict these outcomes it would allow material engineers to focus on elements with the best potential.”

Sep 1, 2022

SU(N) matter is about 3 billion times colder than deep space

Posted by in categories: alien life, particle physics, quantum physics

Japanese and U.S. physicists have used atoms about 3 billion times colder than interstellar space to open a portal to an unexplored realm of quantum magnetism.

“Unless an alien civilization is doing experiments like these right now, anytime this experiment is running at Kyoto University it is making the coldest fermions in the universe,” said Rice University’s Kaden Hazzard, corresponding theory author of a study published today in Nature Physics. “Fermions are not rare particles. They include things like electrons and are one of two types of particles that all matter is made of.”

A Kyoto team led by study author Yoshiro Takahashi used lasers to cool its fermions, atoms of ytterbium, within about one-billionth of a degree of , the unattainable temperature where all motion stops. That’s about 3 billion times colder than , which is still warmed by the afterglow from the Big Bang.

Sep 1, 2022

Why ‘erasure’ could be key to practical quantum computing

Posted by in categories: computing, mobile phones, particle physics, quantum physics

Researchers have discovered a new method for correcting errors in the calculations of quantum computers, potentially clearing a major obstacle to a powerful new realm of computing.

In conventional computers, fixing is a well-developed field. Every cellphone requires checks and fixes to send and receive data over messy airwaves. Quantum computers offer to solve certain that are impossible for conventional computers, but this power depends on harnessing extremely fleeting behaviors of subatomic particles. These computing behaviors are so ephemeral that even looking in on them to check for errors can cause the whole system to collapse.

In a paper outlining a new theory for error correction, published Aug. 9 in Nature Communications, an interdisciplinary team led by Jeff Thompson, an associate professor of electrical and computer engineering at Princeton, and collaborators Yue Wu and Shruti Puri at Yale University and Shimon Kolkowitz at the University of Wisconsin-Madison, showed that they could dramatically improve a quantum computer’s tolerance for faults, and reduce the amount of redundant information needed to isolate and fix errors. The new technique increases the acceptable error rate four-fold, from 1% to 4%, which is practical for quantum computers currently in development.

Sep 1, 2022

How the NQISRCs are harnessing the quantum revolution

Posted by in categories: economics, quantum physics, security

While having their own unique areas of expertise and resources, the NQISRCs are all aligned to the same mission—the advancement of quantum information science.

Five National Quantum Information Science Research Centers (NQISRCs) are leveraging the behavior of nature at the smallest scales to develop technologies for science’s most complex problems. Supported by the U.S. Department of Energy (DOE) Office of Science, the NQISRCs have been supporting DOE’s mission since 2020 to advance the energy, economic and national security of the United States. By building a national quantum ecosystem and workforce comprising researchers at roughly 70 institutions across the United States, the centers create a rich environment for quantum innovation and co-design.

The NQISRCs integrate state-of-the-art DOE facilities, preeminent talent at national laboratories and U.S. universities, and the enterprising ingenuity of U.S. technology companies.

Aug 31, 2022

Research leads to new control over quantum dot qubits

Posted by in categories: computing, quantum physics

Qubits are the building blocks of quantum computers, which have the potential to revolutionize many fields of research by solving problems that classical computers can’t.

But creating qubits that have the perfect quality necessary for quantum computing can be challenging.

Researchers at the University of Wisconsin–Madison, HRL Laboratories LLC, and University of New South Wales (UNSW) collaborated on a project to better control silicon quantum dot qubits, allowing for higher-quality fabrication and use in wider applications. All three institutions are affiliated with the Chicago Quantum Exchange.

Aug 31, 2022

Cross-institutional collaboration leads to new control over quantum dot qubits

Posted by in categories: computing, quantum physics

Qubits are the building blocks of quantum computers, which have the potential to revolutionize many fields of research by solving problems that classical computers can’t.

But creating that have the perfect quality necessary for can be challenging.

Researchers at the University of Wisconsin–Madison, HRL Laboratories LLC, and University of New South Wales (UNSW) collaborated on a project to better control silicon quantum dot qubits, allowing for higher-quality fabrication and use in wider applications. All three institutions are affiliated with the Chicago Quantum Exchange. The work was published in Physical Review Letters, and the lead author, J. P. Dodson, has recently transitioned from UW–Madison to HRL.