БЛОГ

Archive for the ‘quantum physics’ category: Page 786

Apr 26, 2016

Superfast light source made from artificial atom

Posted by in categories: computing, particle physics, quantum physics

A new method to create light while retaining the energy using Q-Dot technology.


All light sources work by absorbing energy – for example, from an electric current – and emit energy as light. But the energy can also be lost as heat and it is therefore important that the light sources emit the light as quickly as possible, before the energy is lost as heat. Superfast light sources can be used, for example, in laser lights, LED lights and in single-photon light sources for quantum technology. New research results from the Niels Bohr Institute show that light sources can be made much faster by using a principle that was predicted theoretically in 1954. The results are published in the scientific journal, Physical Review Letters.

Researchers at the Niels Bohr Institute are working with quantum dots, which are a kind of artificial atom that can be incorporated into optical chips. In a quantum dot, an electron can be excited (i.e. jump up), for example, by shining a light on it with a laser and the electron leaves a ‘hole’. The stronger the interaction between light and matter, the faster the electron decays back into the hole and the faster the light is emitted.

Continue reading “Superfast light source made from artificial atom” »

Apr 26, 2016

New Advancements in Optical and Quantum Computing

Posted by in categories: computing, quantum physics

Making Technology and Science Popular.

Read more

Apr 25, 2016

Reliability of material simulations put to test

Posted by in categories: computing, quantum physics

Change is good; looks like we’re about to re-review some existing simulation codes around Quantum Mechanic Simulation.


Researchers show that new generations of quantum mechanical simulation codes agree better than earlier generations’. The study appears in Science.

Several international scientists from over 30 universities and institutes teamed to investigate to what extent quantum simulations of material properties agree when they are performed by different researchers and with different software. Torbjörn Björkman from Åbo Akademi participated from Finland. Björkman has previously worked at COMP Centre of Excellende at Aalto University. “A group of researchers compared the codes, and the results we got were more precise than in any other calculations before,” he said.

The possibility to produce identical results in independent yet identical researches is a corner stone of science. Only in this way science can identify ‘laws’, which lead to new insights and new technologies. However, several recent studies have pointed out that such reproducibility does not always come spontaneously. Even predictions by computer codes require caution, since the way in which theoretical models are implemented may affect simulation results.

Read more

Apr 25, 2016

Scientists take next step towards observing quantum physics in real life

Posted by in categories: computing, drones, particle physics, quantum physics, transportation

Turning on Quantum properties onto a cup of coffee. First step; should be interesting in what researchers discover especially around teleporting. Imaging you’re Dominos pizza with a teleport hub and customer orders a pizza. No longer need a self driving car, or drone; with this technology Dominos can teleport your hot fresh pizza to your house immediately after it is out of the oven.


Small objects like electrons and atoms behave according to quantum mechanics, with quantum effects like superposition, entanglement and teleportation. One of the most intriguing questions in modern science is if large objects – like a coffee cup — could also show this behavior. Scientists at the TU Delft have taken the next step towards observing quantum effects at everyday temperatures in large objects. They created a highly reflective membrane, visible to the naked eye, that can vibrate with hardly any energy loss at room temperature. The membrane is a promising candidate to research quantum mechanics in large objects.

The team has reported their results in Physical Review Letters.

Continue reading “Scientists take next step towards observing quantum physics in real life” »

Apr 25, 2016

Scientists Create New Quantum State Of Water

Posted by in category: quantum physics

From our friends at ORNL — experiment conducted by scientists at ORNL shows Quantum under pressure produces water. Love the Bowie & Queen video added to the story.


Apparently a molecule under pressure violates the laws of classical physics.

Read more

Apr 23, 2016

Quantum computing leaps: Sydney University and UNSW as the best of frenemies

Posted by in categories: computing, quantum physics

Australia is stepping it up in QC; okay US, Canada, UK, China?…


Sydney opened two quantum computing laboratories this week, but those working in them say their research is competitive collaboration.

Read more

Apr 23, 2016

Europe plans giant billion-euro quantum technologies project

Posted by in categories: neuroscience, quantum physics

Nice


Third European Union flagship will be similar in size and ambition to graphene and human brain initiatives.

Read more

Apr 23, 2016

Data Compression Used to Detect Quantum Entanglement

Posted by in categories: information science, particle physics, quantum physics

Interesting — data compression algorithm can be applied to detect Quantum Entanglement.


The next time you archive some files and compress them, you might think about the process a little differently. Researchers at the National University of Singapore have discovered a common compression algorithm can be used to detect quantum entanglement. What makes this discovery so interesting is that it does not rely on heavily on an assumption that the measured particles are independent and identically distributed.

Continue reading “Data Compression Used to Detect Quantum Entanglement” »

Apr 23, 2016

Google believes artificial intelligence will be bigger than virtual reality

Posted by in categories: cybercrime/malcode, quantum physics, robotics/AI, virtual reality

I too believe AI could be bigger in the future once the under pinning technology and infrastructure moves to Quantum Technology so that hacking is under control and performance is where it needs to be.


When Mark Zuckerberg thinks about the future, he sees a world that’s dominated by mobile devices and virtual reality, but when Google CEO Sundar Pichai thinks about the future, all he sees is artificial intelligence. He suggested as much during Alphabet’s quarterly earnings call on Thursday, saying that mobile devices and virtual reality will dominate the immediate future, but that they’ll eventually be surpassed in importance by artificial intelligence. However, he didn’t go into detail about what this future will look like.

Artificial intelligence is nothing new at Google, but today we learned just how big a role top boss Sundar Pichai sees AI playing in our future. Answering an analyst query on Google-parent company Alphabet’s Q1 2016 earnings call about how the company is leading innovation, rather than simply adapting to changes in technology, Pichai talked about his role in projecting where Alphabet is going in the next 10 years. He gave a shout out to VR as the hot new platform, and then wrapped up his comments by saying: “In the long run, I think we will evolve in computing from a mobile-first world to an AI-first world.” Earlier in the call he cited Google’s DeepMind AlphaGo super computer defeating a human champion as an extraordinary achievement. He also said the company is investing in AI and machine learning, areas that are taking off and beginning to bear real-world benefits.

Read more

Apr 20, 2016

Team builds first quantum cascade laser on silicon

Posted by in categories: computing, quantum physics

Very nice; Silicon based Quantum Laser has been achieved. Imagine what this does for ISPs and other communications. smile


A team of researchers from across the country, led by Alexander Spott, University of California, Santa Barbara, USA, have built the first quantum cascade laser on silicon. The advance may have applications that span from chemical bond spectroscopy and gas sensing, to astronomy and free-space communications.

Integrating lasers directly on chips is challenging, but it is much more efficient and compact than coupling external light to the chips. The indirect bandgap of silicon makes it difficult to build a laser out of silicon, but diode lasers can be built with III-V materials such as InP or GaAs. By directly bonding an III-V layer on top of the silicon wafer and then using the III-V layers to generate gain for the laser, this same group has integrated a multiple quantum well laser on silicon that operates at 2 µm. Limitations in diode lasers prevent going to longer wavelengths where there are many more applications, so the group turned their attention to using quantum cascade lasers instead.

Continue reading “Team builds first quantum cascade laser on silicon” »