БЛОГ

Archive for the ‘bioengineering’ category: Page 198

Sep 23, 2016

Synthetic biology competition launched

Posted by in categories: bioengineering, biological

An annual competition has been launched to assist companies aiming to solve world issues with synthetic biology.

Bio-start offers the winner a combination of £100k cash as well as laboratory space, professional services and a 10 week accelerator programme with mentorship valued at approximately £100k.

Dr Stephen Chambers, CEO of SynbiCITE, one of the companies involved in the founding of the competition said: “This is a first in the UK for synthetic biology and our aim is to help as many companies and entrepreneurs as we can. Once applications have been assessed up to twenty-five businesses will go through our ten-week boot-camp and mentoring programme. Up to ten will go through to the final awards evening where they’ll have a chance to pitch their ideas to an expert panel in front of an audience of investors and industry leaders.”

Continue reading “Synthetic biology competition launched” »

Sep 21, 2016

Synthego Announces First-of-its-kind CRISPR Kit

Posted by in categories: bioengineering, biotech/medical

Synthego, the stealthy genome engineering startup, has announced its release of the world’s first single guide RNA (sgRNA) kit for use in CRISPR/Cas9 editing. The kit is one of several CRISPR genome editing products in the company’s flagship portfolio, known as CRISPRevolution, that was debuted in August of this year.

The importance of the kits within the larger scope of CRISPR genome editing was emphasized by Synthego CEO Paul Dabrowski in his comments on the announcement. “Our kits make world-class genome engineering tools accessible to all scientists,” he said. “They accelerate research and adoption of CRISPR to help make it a standard lab technique. By drastically reducing the time to begin a CRISPR experiment with our rapid turnaround, improving gene editing quality and consistency, and bringing the cost down, we’re closing the gap between CRISPR’s full potential and what’s possible in the lab today.”

Read more

Sep 20, 2016

In vivo work with neural dust using a wireless and scalable ultrasonic backscatter system for powering and communicating the implanted bioelectronics

Posted by in categories: bioengineering, biotech/medical, computing, neuroscience

Berkeley engineers have built the first dust-sized, wireless sensors that can be implanted in the body, bringing closer the day when a Fitbit-like device could monitor internal nerves, muscles or organs in real time.

Neural dust researchers have already shrunk them to a 1 millimeter cube – about the size of a large grain of sand – contain a piezoelectric crystal that converts ultrasound vibrations from outside the body into electricity to power a tiny, on-board transistor that is in contact with a nerve or muscle fiber. A voltage spike in the fiber alters the circuit and the vibration of the crystal, which changes the echo detected by the ultrasound receiver, typically the same device that generates the vibrations. The slight change, called backscatter, allows them to determine the voltage.

Continue reading “In vivo work with neural dust using a wireless and scalable ultrasonic backscatter system for powering and communicating the implanted bioelectronics” »

Sep 20, 2016

When Evolution Fights Back Against Genetic Engineering

Posted by in categories: bioengineering, biotech/medical, evolution, genetics

“Gene drives,” a technology for controlling genetic traits, could revolutionize disease prevention. But nature has a way of thwarting scientific meddling.

Read more

Sep 19, 2016

Researchers address the importance of measurement in synthetic biology

Posted by in categories: bioengineering, biological, government, sustainability

Dr Michael Adeogun and Dr Max Ryadnov from the National Physical Laboratory (NPL) have written an expert view for Bio-Based World News on the importance of measurement science in synthetic biology, highlighting the vital work that NPL has already undertaken in this field.

Synthetic biology is a growing field which seeks to develop solutions to major global challenges, such as the generation of sustainable and affordable materials and chemicals, and the use of bio-engineered organisms as products. The UK aims to achieve a £10bn market in synthetic biology by 2030.

Since the publication of the government-commissioned Synthetic Biology Roadmap in 2012, the UK has become the second largest investor in synthetic biology, having developed a national network of research centres, doctoral training programmes and knowledge facilities to drive growth in the commercial sector.

Read more

Sep 19, 2016

How Fungus And Synthetic Biology Could Save Astronauts On Mars

Posted by in categories: bioengineering, biotech/medical, food, space travel

Clay Wang brought his kids to the California Space Center a few years ago to show them the Space Shuttle. But as he looked up at Endeavour and pondered human space exploration, the pharmacologist wondered, “What if a crew runs out of medicine halfway to Mars?”

A lot of things can go wrong during a three-year mission to Mars, and there’s only so much medicine you can pack. “For food you can predict exactly how much the astronauts will need to eat,” says Wang. “Medicine you can’t predict.”

What if they develop a sudden need for a drug that wasn’t packed? Compounding the problem is the fact that the space environment seems to make many drugs lose potency and degrade more quickly compared to drugs on Earth.

Read more

Sep 19, 2016

CRISPR Could Usher in a New Era of Delicious GMO Foods

Posted by in categories: bioengineering, biotech/medical, food, genetics

That brought a lot of media attention, and Giorgio got skittish. “They didn’t want to have the perception from customers that their company was developing genetically modified organisms,” says Yang. Yang is still working to perfect the anti-browning in his academic lab, but he has no immediate plans to commercialize it.

The anti-browning trait might also just be a tough sell to customers: When a Canadian apple wanted to sell a GM apple that doesn’t brown—genetically altered through conventional means—it had to battle assumptions that growers just wanted to hide bruised produce. Which is, well, true. Produce that doesn’t brown when handled does also mean less waste for stores and growers.

In Sweden, Jansson is no stranger to unease over genetic engineering. His colleagues recently returned from a conference where activists flung cow dung and eggs at scientists. The CRISPR-edited cabbage he grew he actually got from researchers outside Sweden, who did not want their names or even their country revealed, fearing backlash from environmental activists. Jansson did his cabbage stunt because he wanted people to start thinking about what CRISPR could mean for food.

Continue reading “CRISPR Could Usher in a New Era of Delicious GMO Foods” »

Sep 15, 2016

Is it already too late to consider the ethics of mind control technology?

Posted by in categories: bioengineering, biotech/medical, ethics, neuroscience

Very true points that many have been raising with CRISPR, Synthetic Biology, BMI, and humanoid technology. I am glad to see this article on ethics and standards because it really needs to be discussed and implemented.


New brain technologies will increasingly have the potential to alter how someone thinks, feels, behaves and even perceives themselves.

By Nicholas West

Continue reading “Is it already too late to consider the ethics of mind control technology?” »

Sep 15, 2016

CRISPR: What Does Gene Editing Mean for the Future of Primal Living?

Posted by in categories: bioengineering, biotech/medical, genetics

By now, you’ve no doubt heard of CRISPR, the latest gene-editing tool sweeping research labs across the globe. It was first discovered in certain strains of bacteria, who use it as an important weapon against dangerous viruses. In bacteria, CRISPR identifies a virus that poses a threat, records the virus’ genetic data and imprints it onto RNA molecules. An immune enzyme called Cas9 grabs one of the RNA molecules and goes exploring. When Cas9 encounters a virus that matches the data on the RNA molecule, it latches on and slices the virus in half to prevent it from replicating and posing any threat.

Researchers have co-opted the CRISPR/Cas9 mechanism to edit genes. Instead of copying dangerous viral DNA sequences onto the RNA molecules, they can copy over any sequence they want to edit. And instead of Cas9 destroying viruses, it makes precise cuts and removes specific bits of genetic data from the designated sequence. This allows researchers to target and edit specific gene sequences with genetic data of their choosing.

Read more

Sep 15, 2016

Programmable Biology Has Begun

Posted by in categories: bioengineering, biotech/medical, genetics, life extension, singularity

Scientists have completed reprogramming DNA on the largest scale ever, making the concept of superhumans a reality while advancing Singularity.


Cloned embryo.

Most of us like the idea of superpowers. Though we may never have the strength of Superman, we could be made stronger, faster, and even better-looking, with total control over our genome, or genetic makeup. What about becoming disease-resistant, weight gain resistant, and even slowing down the aging process? This might be possible in decades to come, as geneticists are now getting ever closer to, not just removing and replacing genes, but rewriting entire genomes. It sounds like the realm of science fiction. Yet, consider that geneticists at Harvard recently recoded the genome of a synthetic E. coli bacteria. Prof. George Church and colleagues conducted the study.

Continue reading “Programmable Biology Has Begun” »