БЛОГ

Archive for the ‘computing’ category: Page 125

Mar 20, 2024

Scientists Concerned About Devices That Literally Read Your Mind

Posted by in categories: computing, neuroscience

As the world inches ever closer to mind-reading technology, some scientists are calling to legally enshrine the right to keep our thoughts to ourselves.

In interviews with Undark, neuroscientists — including those who are working to make these so-called brain-computer interfaces (BCIs) happen — revealed their concerns about the devices.

In one particularly telling exchange, a pair of researchers from the University of Texas at Austin who’ve successfully created a BCI that can rudimentarily translate brain waves into text described how it felt to realize their device was actually reading their thoughts.

Mar 20, 2024

Noise Fuels Quantum Leap, Boosting Qubit Performance by 700%

Posted by in categories: computing, quantum physics

Scientists around the world work hard to rinse quantum systems for noise, which may disturb the function of tomorrow’s powerful quantum computers. Researchers from the Niels Bohr Institute (NBI) have found a way to use noise to process quantum information. This raises the performance of the quantum computing unit, the qubit.

An international collaboration led by scientists at the Niels Bohr Institute (NBI), University of Copenhagen, has demonstrated an alternative approach. Their method allows to use noise to process quantum information. As a result, the performance of the fundamental quantum computing unit of information, the qubit, is increased by 700 percent.

The results were published recently in the journal Nature Communications.

Mar 19, 2024

The mass-energy-information equivalence principle

Posted by in category: computing

Landauer’s principle formulated in 1961 states that logical irreversibility implies physical irreversibility and demonstrated that information is physical. Here we formulate a new principle of mass-energy-information equivalence proposing that a bit of information is not just physical, as already demonstrated, but it has a finite and quantifiable mass while it stores information. In this framework, it is shown that the mass of a bit of information at room temperature (300K) is 3.19 × 10-38 Kg. To test the hypothesis we propose here an experiment, predicting that the mass of a data storage device would increase by a small amount when is full of digital information relative to its mass in erased state. For 1Tb device the estimated mass change is 2.5 × 10-25 Kg.

Mar 19, 2024

Artificial nanofluidic synapses can store computational memory

Posted by in categories: computing, neuroscience

Memory, or the ability to store information in a readily accessible way, is an essential operation in computers and human brains. A key difference is that while brain information processing involves performing computations directly on stored data, computers shuttle data back and forth between a memory unit and a central processing unit (CPU). This inefficient separation (the von Neumann bottleneck) contributes to the rising energy cost of computers.

Mar 19, 2024

Grimes Using Custom Brain Interface From Elon Musk Competitor

Posted by in categories: computing, Elon Musk, neuroscience

Year 2023 😗😁


Famed musician and former Elon Musk boo Claire “Grimes” Boucher wanted a brain-computer interface (BCI) for her birthday — and one of Neuralink’s apparent competitors was happy to comply.

After Grimes tweeted about getting a “non invasive brain computer interface” for her birthday, AJ Keller, the CEO of the startup Neurosity, confirmed in an interview with Insider that his firm had indeed made a custom brain gadget for the “Kill V. Maim” singer.

Continue reading “Grimes Using Custom Brain Interface From Elon Musk Competitor” »

Mar 19, 2024

Shortcut to Success: Toward fast and robust Quantum Control through Accelerating Adiabatic Passage

Posted by in categories: computing, quantum physics

Researchers at Osaka University’s Institute of Scientific and Industrial Research (SANKEN) used the shortcuts to the adiabaticity (STA) method to greatly speed-up the adiabatic evolution of spin qubits. The spin flip fidelity after pulse optimization can be as high as 97.8% in GaAs quantum dots. This work may be applicable to other adiabatic passage and will be useful for fast and high-fidelity quantum control.

A quantum computer uses the superposition of “0” and “1” states to perform information processing, which is completely different from classical computing, thus allowing for the solution of certain problems at a much faster rate.

High-fidelity quantum state operation in large enough programmable qubit spaces is required to achieve the “quantum advantage.” The conventional method for changing quantum states uses pulse control, which is sensitive to noises and control errors.

Mar 19, 2024

1312.4455–2.pdf

Posted by in categories: computing, quantum physics

The universe as quantum computer by Seth Loyd.


Shared with Dropbox.

Mar 19, 2024

Mathematicians plan computer proof of Fermat’s last theorem

Posted by in categories: computing, mathematics

Fermat’s last theorem puzzled mathematicians for centuries until it was finally proven in 1993. Now, researchers want to create a version of the proof that can be formally checked by a computer for any errors in logic.

By Alex Wilkins

Mar 19, 2024

Ferroelectric compute-in-memory annealer for combinatorial optimization problems

Posted by in categories: computing, information science

Yin et al. realize a FeFET based compute-in-memory annealer as an efficient combinatorial optimization solver through algorithm-hardware co-design with a FeFET chip, matrix lossless compression, and a multi-epoch simulated annealing algorithm.

Mar 18, 2024

Large-scale kinetic simulations of colliding plasmas within a hohlraum of indirect-drive inertial confinement fusion

Posted by in categories: computing, physics

Authors: Tianyi Liang, Dong Wu, Xiaochuan Ning, Lianqiang Shan, Zongqiang Yuan, Hongbo Cai, Zhengmao Sheng, and Xiantu He. Discover more in PRE:


The National Ignition Facility has recently achieved successful burning plasma and ignition using the inertial confinement fusion (ICF) approach. However, there are still many fundamental physics phenomena that are not well understood, including the kinetic processes in the hohlraum. Shan et al. [Phys. Rev. Lett. 120, 195001 (2018)] utilized the energy spectra of neutrons to investigate the kinetic colliding plasma in a hohlraum of indirect drive ICF. However, due to the typical large spatial-temporal scales, this experiment could not be well simulated by using available codes at that time. Utilizing our advanced high-order implicit PIC code, LAPINS, we were able to successfully reproduce the experiment on a large scale of both spatial and temporal dimensions, in which the original computational scale was increased by approximately seven to eight orders of magnitude.