БЛОГ

Archive for the ‘computing’ category: Page 700

Sep 29, 2016

Nanosensors help understand how tumors will respond to therapies

Posted by in categories: biotech/medical, computing, engineering, health

MIT researchers have designed nanosensors that can profile tumors and may yield insight into how they will respond to certain therapies. The system is based on levels of enzymes called proteases, which cancer cells use to remodel their surroundings.

Once adapted for humans, this type of sensor could be used to determine how aggressive a tumor is and help doctors choose the best treatment, says Sangeeta Bhatia, the John and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science and a member of MIT’s Koch Institute for Integrative Cancer Research.

“This approach is exciting because people are developing therapies that are protease-activated,” Bhatia says. “Ideally you’d like to be able to stratify patients based on their protease activity and identify which ones would be good candidates for these therapies.”

Continue reading “Nanosensors help understand how tumors will respond to therapies” »

Sep 29, 2016

Nano-scale mirror could be a breakthrough for optical computing

Posted by in categories: computing, nanotechnology, particle physics

Made from fiber that’s over 200 times thinner than a human hair.

Read more

Sep 29, 2016

D-Wave launches new quantum computer with first 2,000-qubit processor

Posted by in categories: computing, quantum physics

Anyone upgrading their D-Wave 2?


We’re actually a little bit scared of it.

Read more

Sep 29, 2016

Stopping Light: Physicists Move Quantum Computers Closer to Reality

Posted by in categories: computing, engineering, particle physics, quantum physics

Hmmm; like the graphic reminds of one of my posts.


In Brief.

Continue reading “Stopping Light: Physicists Move Quantum Computers Closer to Reality” »

Sep 29, 2016

Quantum computing breakthrough: Israeli scientists invent cannon for entangled photon clusters

Posted by in categories: computing, quantum physics

Scientists have developed a device that can guarantee producing an endless sequence of entangled photons.

Read more

Sep 29, 2016

Will quantum teleportation defeat quantum decryption?

Posted by in categories: computing, encryption, finance, quantum physics, security

Nice article; however, not sure if the author is aware Los Alamos already has a quantum net as well as some Europe banks have the capabilities and 4 months ago it was announced that a joint effort by various countries from Europe, Asia, etc. have come together to re-engineer the Net infrastructure with QC technology…


Maybe the quantum will giveth what the quantum taketh away… at least when it comes to secure transmissions.

There’s been much speculation that emerging quantum computers will become capable of breaking advanced public key cryptography systems, such as 2048-bit RSA. This might leave encrypted data transmissions exposed to anyone who happens to own such a quantum computer.

Continue reading “Will quantum teleportation defeat quantum decryption?” »

Sep 28, 2016

First quantum photonic circuit with an electrically driven light source

Posted by in categories: computing, encryption, nanotechnology, quantum physics

Whether for use in safe data encryption, ultrafast calculation of huge data volumes or so-called quantum simulation of highly complex systems: Optical quantum computers are a source of hope for tomorrow’s computer technology. For the first time, scientists now have succeeded in placing a complete quantum optical structure on a chip, as outlined Nature Photonics. This fulfills one condition for the use of photonic circuits in optical quantum computers.

“Experiments investigating the applicability of optical quantum technology so far have often claimed whole laboratory spaces,” explains Professor Ralph Krupke of the KIT. “However, if this technology is to be employed meaningfully, it must be accommodated on a minimum of space.” Participants in the study were scientists from Germany, Poland, and Russia under the leadership of Professors Wolfram Pernice of the Westphalian Wilhelm University of Münster (WWU) and Ralph Krupke, Manfred Kappes, and Carsten Rockstuhl of the Karlsruhe Institute of Technology (KIT).

The light source for the quantum photonic circuit used by the scientists for the first time were special nanotubes made of carbon. They have a diameter 100,000 times smaller than a human hair, and they emit single light particles when excited by laser light. Light particles (photons) are also referred to as light quanta. Hence the term “quantum photonics.”

Continue reading “First quantum photonic circuit with an electrically driven light source” »

Sep 27, 2016

Russia’s Vladimir Putin is replacing Microsoft’s (MSFT) products and servers with local alternatives

Posted by in category: computing

Made in America? No, thanks.

Read more

Sep 27, 2016

KIT team develops ‘quantum optical structure on a chip

Posted by in categories: computing, nanotechnology, particle physics, quantum physics

Researchers at the Karlsruhe Institute of Technology say they have developed a quantum photonic circuit with an electrically driven light source. Described as a ‘complete quantum optical structure on a chip’, the development is said to fulfil one condition for the use of photonic circuits in optical quantum computers.

“Experiments investigating the applicability of optical quantum technology have often claimed whole laboratory spaces,” said Professor Ralph Krupke. “However, if this technology is to be employed meaningfully, it must be accommodated on a minimum of space.”

The light source for the quantum photonic circuit is carbon nanotubes which emit single particles of light when excited by a laser. Because they emit single photons, carbon nanotubes are attractive as light sources for optical quantum computers.

Continue reading “KIT team develops ‘quantum optical structure on a chip” »

Sep 27, 2016

Quantum computing advances with control of entanglement

Posted by in categories: computing, particle physics, quantum physics

When the quantum computer was imagined 30 years ago, it was revered for its potential to quickly and accurately complete practical tasks often considered impossible for mere humans and for conventional computers. But, there was one big catch: Tiny-scale quantum effects fall apart too easily to be practical for reliably powering computers.

Now, a team of scientists in Japan may have overcome this obstacle. Using laser light, they have developed a precise, continuous control technology giving 60 times more success than previous efforts in sustaining the lifetime of “qubits,” the unit that quantum computers encode. In particular, the researchers have shown that they can continue to create a known as the entangled state—entangling more than one million different physical systems, a world record that was only limited in their investigation by data storage space.

This feat is important because entangled quantum particles, such as atoms, electrons and photons, are a resource of created by the behaviors that emerge at the tiny quantum scale. Harnessing them ushers in a new era of information technology. From such behaviors as superposition and entanglement, quantum particles can perform enormous calculations simultaneously. The report of their investigation appears this week in the journal APL Photonics.

Read more