БЛОГ

Archive for the ‘engineering’ category: Page 177

Feb 21, 2017

NSCI Seminar: Quantum Applications and Microsoft’s unique approach to Quantum Computing

Posted by in categories: chemistry, engineering, quantum physics, robotics/AI

Sharing in case folks would like to listen in.


Microsoft’s Station Q was founded in 2006. The focus of the team has always been topological quantum computing. By taking a full systems architecture approach, we have reached the point where we now able to start engineering a scalable quantum computer. The goal is to be able to solve major problems in areas of interest (e.g., Chemistry, Materials and Machine Learning). This talk will focus on the types of applications that we will be trying to solve as well as the unique approach to quantum computation that we’ve developed. For reference, see:

Current Approach: https://arxiv.org/abs/1610.05289 Chemistry Application: https://arxiv.org/abs/1605.03590 Other papers: https://arxiv.org/find/all/1/all:+wecker_d/0/1/0/all/0/1

Read more

Feb 21, 2017

3D printing houses on Mars with NASA and the University of Central Florida

Posted by in categories: 3D printing, engineering, habitats, space

NASA has enlisted a professor from the University of Central Florida (UCF) in order to find a way of 3D printing structures on Mars.

Pegasus Professor Sudipta Seal, interim chair of UCF’s Materials Science and Engineering program is looking at how metals can be extracted from Martian soil. Speaking about the project, Seal said,

It’s essentially using additive-manufacturing techniques to make constructible blocks. UCF is collaborating with NASA to understand the science behind it.

Continue reading “3D printing houses on Mars with NASA and the University of Central Florida” »

Feb 18, 2017

2017 (Buckminster) Fuller Challenge Prize

Posted by in categories: complex systems, energy, engineering, environmental, futurism, innovation, science, sustainability

“Launched in 2007, the Fuller Challenge has defined an emerging field of practice: the whole systems approach to understanding and intervening in complex and interrelated crises for wide-scale social and environmental impact. The entry criteria have established a new framework through which to identify and measure effective, enduring solutions to global sustainability’s most entrenched challenges. The rigorous selection process has set a unique standard, gaining renown as “Socially-Responsible Design’s Highest Award.”

The Fuller Challenge attracts bold, visionary, tangible initiatives focused on a well-defined need of critical importance. Winning solutions are regionally specific yet globally applicable and present a truly comprehensive, anticipatory, integrated approach to solving the world’s complex problems.”

Deadline is March 31, 2017

Feb 17, 2017

Ford just invested $1 billion in a secretive AI startup founded by former Google and Uber execs

Posted by in categories: engineering, robotics/AI, transportation

Ford is investing $1 billion in a secretive artificial intelligence startup headed by former Google and Uber execs to advance its self-driving car efforts.

The startup, Argo AI, was founded by Bryan Salesky, the former director of hardware for Google’s self-driving-car efforts, and Peter Rander, Uber’s engineering lead at its autonomous cars center.

The $1 billion investment will be spread out over five years as Ford looks to commercialize its self-driving technology by 2021.

Continue reading “Ford just invested $1 billion in a secretive AI startup founded by former Google and Uber execs” »

Feb 16, 2017

NASA Selects Proposals for First Space Technology Research Institutes

Posted by in categories: engineering, space

NASA has selected proposals for the creation of two multi-disciplinary, university-led research institutes that will focus on the development of technologies critical to extending human presence deeper into our solar system.

The new Space Technology Research Institutes (STRIs) created under these proposals will bring together researchers from various disciplines and organizations to collaborate on the advancement of cutting-edge technologies in bio-manufacturing and space infrastructure, with the goal of creating and maximizing Earth-independent, self-sustaining exploration mission capabilities.

“NASA is establishing STRIs to research and exploit cutting-edge advances in technology with the potential for revolutionary impact on future aerospace capabilities,” said Steve Jurczyk, associate administrator for NASA’s Space Technology Mission Directorate in Washington. “These university-led, multi-disciplinary research programs promote the synthesis of science, engineering and other disciplines to achieve specific research objectives with credible expected outcomes within five years. At the same time, these institutes will expand the U.S. talent base in areas of research and development with broader applications beyond aerospace.”

Continue reading “NASA Selects Proposals for First Space Technology Research Institutes” »

Feb 16, 2017

Nanoelectronic thread probes form reliable, scar-free integration with the brain

Posted by in categories: engineering, neuroscience

Another new interface method.


Engineering researchers at The University of Texas at Austin have designed ultra-flexible, nanoelectronic thread (NET) brain probes that can achieve more reliable long-term neural recording than existing probes and don’t elicit scar formation when implanted.

The researchers described their findings in a research article published in Science Advances (“Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration”).

Continue reading “Nanoelectronic thread probes form reliable, scar-free integration with the brain” »

Feb 16, 2017

High-res biomolecule imaging

Posted by in categories: biological, engineering, nanotechnology

Nice.


CAMBRIDGE, Mass. — Determining the exact configuration of proteins and other complex biological molecules is an important step toward understanding their functions, including how they bind with receptors in the body. But such imaging is difficult to do. It usually requires the molecules to be crystallized first so that X-ray diffraction techniques can be applied — and not all such molecules can be crystallized.

Now, a new method developed by researchers at MIT could lead to a way of producing high-resolution images of individual biomolecules without requiring crystallization, and it could even allow zoomed-in imaging of specific sites within the molecules. The technique could also be applied to imaging other kinds of materials, including two-dimensional materials and nanoparticles.

The findings are reported this week in the Proceedings of the National Academy of Sciences, in a paper by Paola Cappellaro, the Esther and Harold E. Edgerton Associate Professor of Nuclear Science and Engineering at MIT, and others at MIT and at the Singapore University of Technology and Design.

Read more

Feb 10, 2017

The Kurzweilian Singularity and Evolution of the Technigenome

Posted by in categories: engineering, nanotechnology, quantum physics, Ray Kurzweil, robotics/AI, security, singularity

Great read and highlights what I have been showing folks around the convergence that is occurring between technology and biology via Quantum. We’re achieving (in the Epoch chart on Singularity Evolution) Epoch 5 via Quantum Bio and our work we’re seeing from DARPA, Microsoft, Amazon, Google, and others. Synbio has to mimic the properties we see with Quantum Biology/ Biosystems. And, things like DARPA’s own RadioBio will enable and expose many things on multiple fronts in Biosensors (including security), IoT, healthcare/ medical prevention management and treatments, AI, etc.


Singularity – the state of being singular; Oneness.

The biological system is a natural form of technology. A simple examination of the nanobiology of the macromolecular system of any cell will attest to this – enzymes and structural proteins are veritable nanomachines, linked to the information processing network of DNA and plasma membranes. Far from being a primordial or rudimentary organic technology – we are discovering more and more the level of complexity and paragon technological sophistication of living systems, which as is being discovered, even includes non-trivial quantum mechanical phenomena once thought to only be possible in the highly specialized and controlled environment of the laboratory.

Continue reading “The Kurzweilian Singularity and Evolution of the Technigenome” »

Feb 10, 2017

Microbial manufacturing

Posted by in categories: biotech/medical, engineering

MIT spinout Manus Biosynthesis engineers microbes to produce rare and expensive ingredients for noncaloric beverages, perfumes, toothpastes, detergents, pesticides, and therapeutics. Spun out of the MIT Department of Chemical Engineering, Manus technologies could lead to new discoveries in drug development and product ingredients.

Read more

Feb 9, 2017

Smaller and smarter MEMS and electronics for bullets that can monitor a building during urban warfare

Posted by in categories: energy, engineering, military

Engineers at the U.S. Army Armament Research, Development and Engineering Center, or ARDEC, have been making advancements in an initiative called “Component Miniaturization.”

Its mission focuses on making armament systems more precise, energy efficient, scalable and effective by reducing the size of critical components in sub-systems such as safe and arm devices, electronics packages, power supplies and inertial measurement systems. Size reductions in one sub-system can have a positive effect on another. For example, a smaller and more efficient electronics package design can reduce power supply demands as well as reduce the need for heavier supporting structures. The space savings and mass savings could then be used to add a larger explosive warhead or increase control surfaces for additional maneuverability. The reduced size and mass could also allow for additional portability to smaller calibers or to systems with greater launch velocities.

The initiative involves several discrete projects, some of which are described below:

Continue reading “Smaller and smarter MEMS and electronics for bullets that can monitor a building during urban warfare” »