БЛОГ

Archive for the ‘engineering’ category: Page 41

Nov 7, 2023

Unlocking Quantum Secrets — Simulations Reveal the Atomic-Scale Story of Qubits

Posted by in categories: biotech/medical, chemistry, computing, engineering, quantum physics

Researchers at the University of Chicago’s Pritzker School of Molecular Engineering, led by Giulia Galli, have conducted a computational study predicting the conditions necessary to create specific spin defects in silicon carbide. These findings, detailed in a paper published in Nature Communications

<em> Nature Communications </em> is a peer-reviewed, open-access, multidisciplinary, scientific journal published by Nature Portfolio. It covers the natural sciences, including physics, biology, chemistry, medicine, and earth sciences. It began publishing in 2010 and has editorial offices in London, Berlin, New York City, and Shanghai.

Nov 6, 2023

MIT Physicists Transform Pencil Lead Into Electronic “Gold”

Posted by in categories: education, engineering, physics

Isolate thin flakes that can be tuned to exhibit three important properties.

MIT is an acronym for the Massachusetts Institute of Technology. It is a prestigious private research university in Cambridge, Massachusetts that was founded in 1861. It is organized into five Schools: architecture and planning; engineering; humanities, arts, and social sciences; management; and science. MIT’s impact includes many scientific breakthroughs and technological advances. Their stated goal is to make a better world through education, research, and innovation.

Nov 3, 2023

Vacuum in optical cavity can change material’s magnetic state without laser excitation

Posted by in categories: computing, engineering, physics

Researchers in Germany and the U.S. have produced the first theoretical demonstration that the magnetic state of an atomically thin material, α-RuCl3, can be controlled solely by placing it into an optical cavity. Crucially, the cavity vacuum fluctuations alone are sufficient to change the material’s magnetic order from a zigzag antiferromagnet into a ferromagnet. The team’s work has been published in npj Computational Materials.

A recent theme in material physics research has been the use of intense laser light to modify the properties of magnetic materials. By carefully engineering the laser light’s properties, researchers have been able to drastically modify the and optical properties of different materials.

However, this requires continuous stimulation by high-intensity lasers and is associated with some practical problems, mainly that it is difficult to stop the material from heating up. Researchers are therefore looking for ways to gain similar control over materials using light, but without employing intense lasers.

Nov 3, 2023

SpaceRake wins $1.8 million in SDA funding for optical communications terminals

Posted by in categories: business, engineering, government, satellites

SAN FRANCISCO – The Space Development Agency awarded SpaceRake, a Cambridge, Massachusetts startup, $1.8 million to develop miniature laser communications terminals.

It was the first government contract for SpaceRake, a firm founded in 2021 by Kerri Cahoy, the Massachusetts Institute of Technology Space Telecommunications, Astronomy and Radiation Laboratory director with a Ph.D. in electrical engineering, and Jeremy Wertheimer, former Google vice president engineering with a Ph.D. in artificial intelligence.

Under the two-year direct-to-Phase 2 Small Business Innovation Research award announced Nov. 1, SpaceRake will develop terminals to enable satellites as small as cubesats to transfer data through laser links with the Transport Layer, a global communications network in low Earth orbit being established by SDA, a U.S. Space Force organization.

Nov 3, 2023

“Considered Impossible Until Now” — Scientists Develop Micro Heat Engine That Challenges the Carnot Limit

Posted by in categories: biotech/medical, chemistry, engineering

Designing a heat engine capable of producing maximum power while maintaining maximum efficiency has long been a significant challenge in physics and engineering. Practical heat engines are constrained by a theoretical limit to their efficiency, known as the Carnot limit, which sets a cap on how much heat can be converted to useful work.

In a breakthrough, researchers at the Indian Institute of Science (IISc) and Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) have devised a novel “micro heat engine” that has overcome this limitation at the lab scale. The study was recently published in the journal Nature Communications

<em> Nature Communications </em> is a peer-reviewed, open-access, multidisciplinary, scientific journal published by Nature Portfolio. It covers the natural sciences, including physics, biology, chemistry, medicine, and earth sciences. It began publishing in 2010 and has editorial offices in London, Berlin, New York City, and Shanghai.

Nov 2, 2023

Engineering Molecular Transitions for Symmetry-Violation Tests

Posted by in category: engineering

Researchers have engineered ultracold molecular transitions ideally suited for probing beyond-standard-model effects of symmetry violations.

Nov 2, 2023

Researchers develop approach that could help supercharge T-cell therapies against solid tumors

Posted by in categories: biotech/medical, engineering, health

Researchers at the National Institutes of Health have developed a way to potentially increase the effectiveness of T cell–based immunotherapy treatments, such as CAR T-cell therapy, against solid tumors. T cells are specialized white blood cells of the immune system that eliminate infected or abnormal cells. In animal studies, the enhanced T-cell therapies were effective against cervical cancer and neuroblastoma, a common solid tumor in children. The findings, by scientists at the National Cancer Institute (NCI), part of NIH, appear in Clinical Cancer Research.

CAR T-cell therapy is a form of cellular immunotherapy that involves engineering T cells in the laboratory so they can specifically target and kill tumors. CAR T-cell therapy has been successful in treating blood cancers, but it hasn’t worked well for solid tumors. To improve the effectiveness of T-cell therapy against solid tumors, researchers at NCI’s Center for Cancer Research engineered T cells (CAR T cells and another form of cellular immunotherapy called TCR T cells) to carry cytokines, which are proteins that can boost T-cell function.

In laboratory studies, CAR and TCR T cells modified to express the cytokines IL-15 and IL-21 on their surface killed far more than T cells carrying just one of these cytokines or neither of them. Previous research has found that treating patients with large amounts of cytokines caused severe, potentially fatal, side effects. The new approach aims to deliver this cytokine boost in a much more targeted way.

Nov 1, 2023

Engineering stem cells to treat liver disease

Posted by in categories: biotech/medical, engineering

Transplant is the only option now for liver failure, but it’s not for everyone. One Mayo Clinic M.D./Ph. D. student and her mentor are researching ways to regenerate liver cells as a possible treatment for end-stage liver disease.


“Research provides us with the understanding to develop tools to make big changes in clinical problems like those facing patients with liver failure,” says Nguyen. “I want to be on the forefront of developing medical technologies that provide alternatives. I derive a lot of passion for research through thinking about the future patients I will be treating in the clinic.”

Nguyen is a fifth-year M.D.-Ph. D. student in the Mayo Clinic Alix School of Medicine, who is also completing her Ph.D. in regenerative sciences through the Mayo Clinic Graduate School of Biomedical Sciences.

Continue reading “Engineering stem cells to treat liver disease” »

Oct 31, 2023

Quieting Noise in Gravitational-Wave Detectors

Posted by in categories: engineering, quantum physics, space

To tackle the problem, the LIGO Scientific Collaboration followed an approach, proposed in 2001, that involves squeezing the noise ellipse differently at different frequencies. This frequency-dependent squeezing is realized by coupling the interferometer to a 300-m-long “filter” cavity. Through the cavity, the team could tailor the spectrum of the squeezed state, injecting amplitude squeezing in the low-frequency region and phase squeezing in the high-frequency region, says Victoria Xu, also of MIT LIGO Lab. “This [approach] allows us to reduce the limiting forms of quantum noise in each frequency band,” she says.

The frequency-dependent approach had previously been demonstrated in tabletop systems but implementing it to mitigate radiation-pressure noise in a full-scale gravitational-wave detector was a massive engineering challenge, Xu says. An important aspect was the minimization of optical losses due to imperfect optical components or to a mismatch of the light modes propagating in the various parts of the setup—the filter cavity, the squeezer, and the interferometer. “Any loss can be seen as a ‘port’ through which regular, nonsqueezed vacuum can enter,” Barsotti says.

The LIGO Scientific Collaboration tested frequency-dependent squeezing during the commissioning of the instrument upgrades for the fourth run, comparing detector noise spectra for no squeezing, frequency-independent squeezing, and frequency-dependent squeezing. Frequency-dependent squeezing yielded similar enhancements to frequency-independent squeezing at high frequencies while eliminating the degradation below 300 Hz due to radiation-pressure noise. The team estimated that the improved noise performance would increase the distance over which mergers can be detected by 15%–18%, corresponding to up to a 65% increase in the volume of the Universe that the LIGO interferometer will be able to probe. Quantum optics specialist Haixing Miao of Tsinghua University in China says this result demonstrates an exceptional ability to manipulate quantum states of light with optical cavities but also offers an impressive demonstration that quantum measurement theory applies to the kilometer scales of a gravitational-wave detector.

Oct 30, 2023

Breaking the Quantum Limit: From Einstein-Bohr Debates to Achieving “Unattainable” Efficiency

Posted by in categories: computing, engineering, quantum physics

Researchers at the University of Stuttgart have demonstrated that a key ingredient for many quantum computation and communication schemes can be performed with an efficiency that exceeds the commonly assumed upper theoretical limit — thereby opening up new perspectives for a wide range of photonic quantum technologies.

Quantum science not only has revolutionized our understanding of nature, but is also inspiring groundbreaking new computing, communication, and sensor devices. Exploiting quantum effects in such ‘quantum technologies’ typically requires a combination of deep insight into the underlying quantum-physical principles, systematic methodological advances, and clever engineering. And it is precisely this combination that researchers in the group of Prof. Stefanie Barz at the University of Stuttgart and the Center for Integrated Quantum Science and Technology (IQST) have delivered in recent study, in which they have improved the efficiency of an essential building block of many quantum devices beyond a seemingly inherent limit.

Historical foundations: from philosophy to technology.

Page 41 of 261First3839404142434445Last