БЛОГ

Archive for the ‘genetics’ category: Page 41

Jun 8, 2024

Gene Variants Predict Breast Cancer Outcomes

Posted by in categories: biotech/medical, genetics

Many people have heard of the BRCA1 and BRCA2 genes because of their association with breast cancer. But scientists have now suggested that many of the genetic variants we are born with, in a variety of different genes, can make a powerful prediction about what type of breast cancer an individual could develop, and what the outcome could be. This study has indicated that random genetic variants that are acquired over a lifetimes are far less important to breast cancer risk compared to those a person is born with; the findings have been published in Science.

“Apart from a few highly penetrant genes that confer significant cancer risk, the role of heredity factors remains poorly understood, and most malignancies are assumed to result from random errors during cell division or bad luck,” said senior study author Christina Curtis, PhD, a Professor at Stanford University. While that would make it seem like random events cause the growth of tumors, this is not what’s been observed. Instead, tumor development is influence by immunity and genetics, said Curtis. “This new result unearths a new class of biomarkers to forecast tumor progression and an entirely new way of understanding breast cancer origins.”

Jun 7, 2024

Scientists have traced the origin of the modern horse to a lineage that emerged 4,200 years ago

Posted by in category: genetics

WASHINGTON (AP) — The horse transformed human history – and now scientists have a clearer idea of when humans began to transform the horse.

Around 4,200 years ago, one particular lineage of horse quickly became dominant across Eurasia, suggesting that’s when humans started to spread domesticated horses around the world, according to research published Thursday in the journal Nature.

There was something special about this horse: It had a genetic mutation that changed the shape of its back, likely making it easier to ride.

Jun 6, 2024

Human Neurons Play the Waiting Game

Posted by in categories: genetics, neuroscience

When it comes to development, an epigenetic clock may be responsible for human neurons’ slower maturation.

Jun 6, 2024

Horvath Epigenetic Age: A Weak Spot, But I Have A Plan (14-Test Analysis)

Posted by in category: genetics

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhDDiscount Links: Epigenetic Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQ

Jun 4, 2024

Johns Hopkins Scientists Solve 30-Year Biological Mystery of Night Blindness

Posted by in categories: biotech/medical, genetics

In what they believe is a solution to a 30-year biological mystery, neuroscientists at Johns Hopkins Medicine say they have used genetically engineered mice to address how one mutation in the gene for the light-sensing protein rhodopsin results in congenital stationary night blindness.

The condition, present from birth, causes poor vision in low-light settings.

The findings, published May 14 in Proceedings of the National Academy of Sciences, demonstrate that the rhodopsin gene mutation, called G90D, produces an unusual background electrical “noise” that desensitizes the eye’s rods, those cells in the retina at the back of the eye responsible for nighttime vision, thus causing night blindness.

Jun 3, 2024

Combining proteomics and AI to enable ‘a new era in healthcare’

Posted by in categories: biotech/medical, genetics, life extension, robotics/AI

Understanding aging and age-related diseases requires analyzing a vast number of factors, including an individual’s genetics, immune system, epigenetics, environment and beyond. While AI has long been touted for its potential to shed light on these complexities of human biology and enable the next generation of healthcare, we’ve yet to see the emergence of tools that truly deliver on this promise.

Leveraging advanced plasma proteomics, US startup Alden Scientific has developed AI models capable of making the connections needed to accurately assess an individual’s state of health and risk of disease. The company’s tool measures more than 200 different conditions, including leading causes of morbidity and mortality such as Alzheimer’s, heart disease, diabetes and stroke. Significantly, its models also enable an individual to understand how an intervention impacts these risks.

With a host of top Silicon Valley investors among its early adopters, Alden is now using its platform to conduct an IRB-approved health study designed to provide a “longitudinal understanding of the interplay between environmental, biological, and medical data.”

Jun 3, 2024

A Neurodevelopmental Disorder Affecting Thousands is Discovered

Posted by in categories: biotech/medical, genetics, neuroscience

For decades, the study of genetic disease was focused on genes that code for protein. But scientists have now identified a novel neurodevelopmental disorder that is caused by mutations in a gene that does not code for protein, called RNU4-2. These mutations lead to neurological symptoms that cause cognitive dysfunction, but have not previously been linked together as one disease. These findings have been reported in Nature Medicine.

In this work, the investigators analyzed whole-genome sequencing data from over 5,000 cases of intellectual disability and over 46,000 unaffected individuals. The research focused on unusual variations in the sequences of 41,132 genes that do not code for protein. The research revealed a gene that is apparently a common cause of neurodevleopmental problems. The scientists also determined that these mutations often arise spontaneously, and are not usually inherited from a parent.

Jun 3, 2024

Editing without ‘cutting’: Molecular mechanisms of new gene-editing tool revealed

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics

Joint research led by Yutaro Shuto, Ryoya Nakagawa, and Osamu Nureki of the University of Tokyo determined the spatial structure of various processes of a novel gene-editing tool called “prime editor.” Functional analysis based on these structures also revealed how a “prime editor” could achieve reverse transcription, synthesizing DNA from RNA, without “cutting” both strands of the double helix. Clarifying these molecular mechanisms contributes greatly to designing gene-editing tools accurate enough for gene therapy treatments. The findings were published in the journal Nature.

The 2020 Nobel Prize in Chemistry was awarded to Jennifer Doudna and Emmanuelle Charpentier for developing a groundbreaking yet simple way to edit DNA, the “blueprint” of living organisms. While their discovery opened new avenues for research, the accuracy of the method and safety concerns about “cutting” both strands of DNA limited its use for gene therapy treatments. As such, research has been underway to develop tools that do not have these drawbacks.

The prime editing system is one such tool, a molecule complex consisting of two components. One component is the prime editor, which combines a SpCas9 protein, used in the first CRISPR-Cas gene editing technology, and a reverse transcriptase, an enzyme that transcribes RNA into DNA. The second component is the prime editing guide RNA (pegRNA), a modified guide RNA that identifies the target sequence within the DNA and encodes the desired edit. In this complex, the prime editor works like a “word processor,” accurately replacing genomic information. The tool has already been successfully implemented in living cells of organisms such as plants, zebrafish, and mice. However, precisely how this molecule complex executes each step of the editing process has not been clear, mostly due to a lack of information on its spatial structure.

Jun 2, 2024

Reversible Molecular Changes Can Cause Cancer, Study Shows

Posted by in categories: biotech/medical, genetics, life extension

Though one in two people will develop some form of cancer in their lifetime, there’s still much we don’t know about this disease. But thanks to continued research efforts, we keep learning more about the biology of cancer. One of these recent discoveries could even transform our understanding of how cancers develop.

But before we talk about the new discovery, let’s first discuss the classical theory that attempts to explain why normal cells become cancer cells. This theory posits that DNA mutations are the primary cause of cancers.

It’s well known that ageing, as well as some lifestyle and environmental factors (such as smoking and UV radiation) cause random DNA mutations (also known as genetic alterations) in our cells. Most genetic alterations trigger cell death or have no consequence.

May 30, 2024

Integrating human endogenous retroviruses into transcriptome-wide association studies highlights novel risk factors for major psychiatric conditions

Posted by in categories: biotech/medical, genetics, neuroscience

Duarte et al. report that common genetic variants linked to psychiatric disorders influence the regulation of ancient retroviruses integrated into the genome. This suggests ancient viruses acquired millions of years ago may have shaped modern human brain function.

Page 41 of 520First3839404142434445Last