БЛОГ

Archive for the ‘information science’ category: Page 165

Jul 9, 2020

6 Dimensionality Reduction Algorithms With Python

Posted by in categories: information science, robotics/AI

Dimensionality reduction is an unsupervised learning technique.

Nevertheless, it can be used as a data transform pre-processing step for machine learning algorithms on classification and regression predictive modeling datasets with supervised learning algorithms.

There are many dimensionality reduction algorithms to choose from and no single best algorithm for all cases. Instead, it is a good idea to explore a range of dimensionality reduction algorithms and different configurations for each algorithm.

Jul 9, 2020

Can existing laws cope with the AI revolution?

Posted by in categories: biotech/medical, government, information science, robotics/AI

Say something Eric Klien.


Given the increasing proliferation of AI, I recently carried out a systematic review of AI-driven regulatory gaps. My review sampled the academic literature on AI in the hard and social sciences and found fifty existing or future regulatory gaps caused by this technology’s applications and methods in the United States. Drawing on an adapted version of Lyria Bennett-Moses’s framework, I then characterized each regulatory gap according to one of four categories: novelty, obsolescence, targeting, and uncertainty.

Significantly, of the regulatory gaps identified, only 12 percent represent novel challenges that compel government action through the creation or adaptation of regulation. By contrast, another 20 percent of the gaps are cases in which AI has made or will make regulations obsolete. A quarter of the gaps are problems of targeting, in which regulations are either inappropriately applied to AI or miss cases in which they should be applied. The largest group of regulatory gaps are ones of uncertainty in which a new technology is difficult to classify, causing a lack of clarity about the application of existing regulations.

Continue reading “Can existing laws cope with the AI revolution?” »

Jul 9, 2020

Programmable balloons pave the way for new shape-morphing devices

Posted by in categories: biotech/medical, information science

Balloon shaping isn’t just for kids anymore. A team of researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) has designed materials that can control and mold a balloon into pre-programmed shapes. The system uses kirigami sheets—thin sheets of material with periodic cuts—embedded into an inflatable device. As the balloon expands, the cuts in the kirigami sheet guide the growth, permitting expansion in some places and constricting it in others. The researchers were able to control the expansion not only globally to make large-scale shapes, but locally to generate small features.

The team also developed an inverse design strategy, an algorithm that finds the optimum design for the kirigami inflatable device that will mimic a target shape upon inflation.

Continue reading “Programmable balloons pave the way for new shape-morphing devices” »

Jul 6, 2020

How AI Sees Through the Looking Glass: Things Are Different on the Other Side of the Mirror

Posted by in categories: information science, robotics/AI, transportation

Text is backward. Clocks run counterclockwise. Cars drive on the wrong side of the road. Right hands become left hands.

Intrigued by how reflection changes images in subtle and not-so-subtle ways, a team of Cornell researchers used artificial intelligence to investigate what sets originals apart from their reflections. Their algorithms learned to pick up on unexpected clues such as hair parts, gaze direction and, surprisingly, beards – findings with implications for training machine learning models and detecting faked images.

Jul 1, 2020

Scientists Fire Up a Commercially Available Desktop Quantum Computer

Posted by in categories: computing, education, information science, quantum physics

Scientists suggest a desktop quantum computer based on nuclear magnetic resonance (NMR) could soon be on its way to a classroom near you. Although the device might not be suited to handle large quantum applications, the makers say it could help students learn about quantum computing.

SpinQ Chief Scientist Prof. Bei Zeng from University of Guelph, announced the SpinQ Gemini, a two-qubit desktop quantum computer, at the industry session of the Quantum Information Processing (QIP2020) conference, which is held recently in Shenzhen, China. It is the first time that a desktop quantum computer is commercially available, according to the researchers.

SpinQ Gemini is built by the state-of-the-art technology of permanent magnets, providing 1T magnetic field, running at room temperature, and maintenance free. It demonstrates quantum algorithms such as Deutsch’s algorithm and Grover’s algorithm for teaching quantum computing to university and high school students, also provides advanced models for quantum circuit design and control sequence design for researchers.

Jun 29, 2020

NASA’s New Moon-Bound Space Suits Will Get a Boost From AI

Posted by in categories: information science, robotics/AI, space

Engineers are turning to generative design algorithms to build components for NASA’s next-generation space suit—the first major update in decades.

Jun 29, 2020

How Chinese tech giants are disrupting insurance industry with pooled funds

Posted by in categories: biotech/medical, finance, health, information science, internet, mobile phones

However, the situation has been improving as Chinese tech giants including e-commerce company Alibaba, search engine Baidu, on-demand delivery company Meituan Dianping, ride-hailing operator Didi Chuxing and smartphone maker Xiaomi now offer more affordable health care plans via mutual aid platforms, which operate as a collective claim-sharing mechanism.


China’s online mutual aid platforms are disrupting old school insurance companies by leveraging big data and internet finance technologies to offer low cost medical coverage.

Jun 28, 2020

Mathematical Breakthrough Makes It Easier to Explore Quantum Entanglement

Posted by in categories: information science, mathematics, particle physics, quantum physics

Updated mathematical techniques that can distinguish between two types of ‘non-Gaussian curve’ could make it easier for researchers to study the nature of quantum entanglement.

Quantum entanglement is perhaps one of the most intriguing phenomena known to physics. It describes how the fates of multiple particles can become entwined, even when separated by vast distances. Importantly, the probability distributions needed to define the quantum states of these particles deviate from the bell-shaped, or ‘Gaussian’ curves which underly many natural processes. Non-Gaussian curves don’t apply to quantum systems alone, however. They can also be composed of mixtures of regular Gaussian curves, producing difficulties for physicists studying quantum entanglement. In new research published in EPJ D, Shao-Hua Xiang and colleagues at Huaihua University in China propose a solution to this problem. They suggest an updated set of equations that allows physicists to easily check whether or not a non-Gaussian state is genuinely quantum.

As physicists make more discoveries about the nature of quantum entanglement, they are rapidly making progress towards advanced applications in the fields of quantum communication and computation. The approach taken in this study could prove to speed up the pace of these advances. Xiang and colleagues acknowledge that while all previous efforts to distinguish between both types of non-Gaussian curve have had some success, their choices of Gaussian curves as a starting point have so far meant that no one approach has yet proven to be completely effective. Based on the argument that there can’t be any truly reliable Gaussian reference for any genuinely quantum non-Gaussian state, the researchers present a new theoretical framework.

Jun 27, 2020

Future shocks: 17 technology predictions for 2025

Posted by in categories: biotech/medical, information science, robotics/AI

1. AI-optimized manufacturing

Paper and pencil tracking, luck, significant global travel and opaque supply chains are part of today’s status quo, resulting in large amounts of wasted energy, materials and time. Accelerated in part by the long-term shutdown of international and regional travel by COVID-19, companies that design and build products will rapidly adopt cloud-based technologies to aggregate, intelligently transform, and contextually present product and process data from manufacturing lines throughout their supply chains. By 2025, this ubiquitous stream of data and the intelligent algorithms crunching it will enable manufacturing lines to continuously optimize towards higher levels of output and product quality – reducing overall waste in manufacturing by up to 50%. As a result, we will enjoy higher quality products, produced faster, at lower cost to our pocketbooks and the environment.

Anna-Katrina Shedletsky, CEO and Founder of Instrumental.

Jun 27, 2020

Pagaya raises $102 million to manage assets with AI

Posted by in categories: finance, information science, robotics/AI, transportation

Pagaya, an AI-driven institutional asset manager that focuses on fixed income and consumer credit markets, today announced it raised $102 million in equity financing. CEO Gal Krubiner said the infusion will enable Pagaya to grow its data science team, accelerate R&D, and continue its pursuit of new asset classes including real estate, auto loans, mortgages, and corporate credit.

Pagaya applies machine intelligence to securitization — the conversion of an asset (usually a loan) into marketable securities (e.g., mortgage-backed securities) that are sold to other investors — and loan collateralization. It eschews the traditional method of securitizing pools of previously assembled asset-backed securities (ABS) for a more bespoke approach, employing algorithms to compile discretionary funds for institutional investors such as pension funds, insurance companies, and banks. Pagaya selects and buys individual loans by analyzing emerging alternative asset classes, after which it assesses their risk and draws on “millions” of signals to predict their returns.

Pagaya’s data scientists can build algorithms to track activities, such as auto loans made to residents in cities and even specific neighborhoods, for instance. The company is only limited by the amount of data publicly available; on average, Pagaya looks at decades of information on borrowers and evaluates thousands of variables.