БЛОГ

Archive for the ‘materials’ category: Page 98

Jun 20, 2023

Creating Lithography-Free Photonic Reprogrammable Circuits

Posted by in categories: materials, robotics/AI

The field of photonics has seen significant advances during the past decades, to the point where it is now an integral part of high-speed, international communications. For general processing photonics is currently less common, but is the subject of significant research. Unlike most photonic circuits which are formed using patterns etched into semiconductor mask using lithography, purely light-based circuits are a tantalizing possibility. This is the focus of a recent paper (press release, ResearchGate) in Nature Photonics by [Tianwei Wu] and colleagues at the University of Pennsylvania.

What is somewhat puzzling is that despite the lofty claims of this being ‘the first time’ that such an FPGA-like device has been created for photonics, this is far from the case, as evidenced by e.g. a 2017 paper by [Kaichen Dong] and colleagues (full article PDF) in Advanced Materials. Here the researchers used a slab of vanadium dioxide (VO2) with a laser to heat sections to above 68 °C where the material transitions from an insulating to a metallic phase and remains that way until the temperature is lowered again. The μm-sized features that can be created in this manner allow for a wide range of photonic devices to be created.

What does appear to be different with the photonic system presented by [Wu] et al. is that it uses a more traditional 2D approach, with a slab of InGaAsP on which the laser pattern is projected. Whether it is more versatile than other approaches remains to be seen, with the use of fully photonic processors in our computers still a long while off, never mind photonics-accelerated machine learning applications.

Jun 19, 2023

3D-printed “superalloy” could make power plants more efficient

Posted by in categories: energy, materials

A new high-performance metal alloy, called a superalloy, could help boost the efficiency of the turbines used in power plants and the aerospace and automotive industries.

Created using a 3D printer, the superalloy is composed of a blend of six elements that altogether form a material that’s both lighter and stronger than the standard materials used in conventional turbine machinery. The strong superalloy could help industries cut both costs and carbon emissions — if the approach can be successfully scaled up.

The challenge: In the world of materials science, the search for new metal alloys has been heating up in recent years. For over a century, we’ve depended on relatively simple alloys like steel, composed of 98% iron, to form the backbone of our manufacturing and construction industries. But today’s challenges demand more: alloys that can withstand higher temperatures and remain strong under stress, yet still be lightweight.

Jun 17, 2023

Hetero-Aggregation-Induced Tunable Emission in Multicomponent Crystals

Posted by in categories: engineering, materials

Crystal engineering is a green and convenient approach to designing desirable materials through rational manipulation of intermolecular interactions. We have reported the lesser reported sulfonate–pyridinium intermolecular interaction for the design and synthesis of organic co-crystals with improved features. Here in we report the utilization of the interaction to tune the solid-state luminescence of organic precursor naphthalene disulfonic acid (NDSA-2H). Organic salts of NDSA-2H are synthesized and characterized with three isostructural bipyridyl co-formers: 4-phenylpyridine (4-PhPy), 2-phenylpyridine (2-PhPy) and 2,2′-bipyridine (2,2-bpy). Structural investigation validates aggregation of organic acid and base co-formers through sulfonate–pyridinium synthon and proton transfer between them.

Jun 16, 2023

Stable in all kinds of shapes

Posted by in category: materials

ETH Zurich researchers have developed a structure that can switch between stable shapes as needed while being remarkably simple to produce. The key lies in a clever combination of base materials.

Jun 14, 2023

Graphene’s ‘cousin’ makes a switchable topological insulator

Posted by in categories: energy, materials

Germanene – a two-dimensional, graphene-like form of the element germanium – can carry electricity along its edges with no resistance. This unusual behaviour is characteristic of materials known as topological insulators, and the researchers who observed it say the phenomenon could be used to make faster and more energy-efficient electronic devices.

Like graphene, germanene is an atomically thin material with a honeycomb structure. Like graphene, germanene’s electronic band structure contains a point at which the valence and conduction bands meet. At this meeting point, spin-orbit coupling creates a narrow gap between the bands within the material’s bulk, causing it to act as an insulator. Along the material’s edges, however, special topological states arise that bridge this gap and allow electrons to flow unhindered.

\r \r

Jun 13, 2023

The ‘world’s first space factory’ has successfully been deployed

Posted by in categories: materials, space

Varda Space Industries aims to kickstart a new era of mass production of pharmaceuticals and other materials from Earth’s orbit.

A California-based startup co-founded by a SpaceX veteran, Varda Space Industries, announced it has successfully deployed its first satellite, W-Series 1, in orbit.

The company aims to kickstart the mass production of materials in space that either can’t be produced on Earth or are developed faster and with higher quality in microgravity conditions.

Jun 13, 2023

Mind-control robots a reality

Posted by in categories: materials, robotics/AI

The technology was recently demonstrated by the Australian Army, where soldiers operated a Ghost Robotics quadruped robot using the brain-machine interface. Photo supplied by Australian Army. #Graphene


New technology is making mind reading possible with positive implications for the fields of healthcare, aerospace and advanced manufacturing.

Researchers from the University of Technology Sydney (UTS) have developed biosensor technology that will allow you to operate devices, such as robots and machines, solely through thought-control.

Continue reading “Mind-control robots a reality” »

Jun 12, 2023

Team develops a novel, completely solid, rechargeable air battery

Posted by in category: materials

Metals are typically used as active materials for negative electrodes in batteries. Recently, redox-active organic molecules, such as quinone-and amine-based molecules, have been used as negative electrodes in rechargeable metal–air batteries with oxygen-reducing positive electrodes. Here, protons and hydroxide ions participate in the redox reactions. Such batteries exhibit high performance, close to the maximum capacity that is theoretically possible.

Furthermore, using redox-active organic molecules in rechargeable air batteries overcomes problems associated with metals, including the formation of structures called ‘dendrites,’ which impact battery performance, and have negative environmental impact. However, these batteries use liquid electrolytes—just like metal-based batteries—which pose major safety concerns like high electrical resistance, leaching effects, and flammability.

Now, in a recent study published in Angewandte Chemie International Edition, a group of Japanese researchers have developed an all-solid-state rechargeable air battery (SSAB) and investigated its capacity and durability. The study was led by Professor Kenji Miyatake from Waseda University and the University of Yamanashi, and co-authored by Professor Kenichi Oyaizu from Waseda University.

Jun 11, 2023

Novel ferroelectrics for more efficient microelectronics

Posted by in categories: computing, materials

When we communicate with others over wireless networks, information is sent to data centers where it is collected, stored, processed, and distributed. As computational energy usage continues to grow, it is on pace to potentially become the leading source of energy consumption in this century. Memory and logic are physically separated in most modern computers, and therefore the interaction between these two components is very energy intensive in accessing, manipulating, and re-storing data.

A team of researchers from Carnegie Mellon University and Penn State University is exploring materials that could possibly lead to the integration of the memory directly on top of the transistor. By changing the architecture of the microcircuit, processors could be much more efficient and consume less energy. In addition to creating proximity between these components, the nonvolatile materials studied have the potential to eliminate the need for computer memory systems to be refreshed regularly.

Their recent work published in Science explores materials that are ferroelectric, or have a spontaneous electric polarization that can be reversed by the application of an external electric field. Recently discovered wurtzite ferroelectrics, which are mainly composed of materials that are already incorporated in semiconductor technology for integrated circuits, allow for the integration of new power-efficient devices for applications such as non-volatile memory, electro-optics, and harvesting.

Jun 10, 2023

Liquid Metal Breakthrough Can Transform Everyday Materials Into Electronic “Smart Devices”

Posted by in categories: biological, materials

Chinese scientists have devised a technique to coat everyday materials like paper and plastic with liquid metal, potentially creating “smart devices.” The method, which involves adjusting pressure rather than using a binding material, successfully enables the liquid metal to adhere to surfaces, a previously challenging task due to high surface tension.

Everyday materials such as paper and plastic could be transformed into electronic “smart devices” by using a simple new method to apply liquid metal to surfaces, according to scientists in Beijing, China. The study, published June 9 in the journal Cell Reports.

<em>Cell Reports</em> is a peer-reviewed scientific journal that published research papers that report new biological insight across a broad range of disciplines within the life sciences. Established in 2012, it is the first open access journal published by Cell Press, an imprint of Elsevier.