БЛОГ

Archive for the ‘particle physics’ category: Page 119

Oct 4, 2018

Scientists Have Found a New Way of Storing Information in a Single Atom

Posted by in categories: computing, particle physics

Humanity is producing so much data every single minute that we either need to slow down, or scientists need to crack the problem of finding better ways of storing that data ASAP. Now, new research has taken us one step closer to the ultimate in compact data storage: putting data on a single atom.

As the basic building blocks of all matter, atoms are the smallest object we could possibly store a bit (a 1 or a 0) on, potentially shrinking down the size of existing hard drives by about a thousand times or so, if we can figure out how to get it to work.

Scientists have already made progress in storing bits on atoms, but only on a small scale and in tightly controlled lab conditions, which usually means extremely cold setups.

Continue reading “Scientists Have Found a New Way of Storing Information in a Single Atom” »

Oct 2, 2018

Atom Smasher Detects Hints of New Unstable Particle

Posted by in category: particle physics

The Large Hadron Collider, a massive particle accelerator near Geneva, Switzerland, just discovered two new baryons and hints of a meson.

Read more

Oct 2, 2018

Earth could shrink to 330ft across if particle accelerator experiments go wrong

Posted by in category: particle physics

Absolutely terrifying.


The views expressed in the contents above are those of our users and do not necessarily reflect the views of MailOnline.

Continue reading “Earth could shrink to 330ft across if particle accelerator experiments go wrong” »

Sep 27, 2018

Bizarre Particles Keep Flying Out of Antarctica’s Ice, and They Might Shatter Modern Physics

Posted by in category: particle physics

There’s something out there that physicists have never seen before, and it’s coming up from the bottom of the Earth. Scientists think it’s a brand-new particle.

Read more

Sep 21, 2018

New observations to understand the phase transition in quantum chromodynamics

Posted by in categories: cosmology, particle physics, quantum physics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved nearly freely in a quark-gluon plasma. Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons.

In the current issue of Nature, an international team of scientists has presented an analysis of a series of experiments at major particle accelerators that sheds light on the nature of this transition. The scientists determined with precision the transition temperature and obtained new insights into the mechanism of cooling and freeze-out of the -gluon plasma into the current constituents of matter such as protons, neutrons and . The team of researchers consists of scientists from the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, and from the universities of Heidelberg and Münster (Germany), and Wroclaw (Poland).

A central result: The record-breaking high-energy experiments with the ALICE detector at the Large Hadron Collider (LHC) at the research center CERN produced matter in which particles and antiparticles coexisted in equal amounts, similar to the conditions in the . The team has confirmed via analysis of the experimental data theoretical predictions that the phase transition between and hadronic matter takes place at the temperature of 156 MeV, 120,000 times higher than that in the interior of the sun.

Continue reading “New observations to understand the phase transition in quantum chromodynamics” »

Sep 20, 2018

Physicists investigate why matter and antimatter are not mirror images

Posted by in category: particle physics

AS MISMATCHES go, it’s a big one. When physicists bring the Standard Model of particle physics and Einstein’s general theory of relativity together they get a clear prediction. In the very early universe, equal amounts of matter and antimatter should have come into being. Since the one famously annihilates the other, the result should be a universe full of radiation, but without the stars, planets and nebulae that make up galaxies. Yet stars, planets and nebulae do exist. The inference is that matter and antimatter are not quite as equal and opposite as the models predict.

This problem has troubled physics for the past half-century, but it may now be approaching resolution. At CERN, a particle-physics laboratory near Geneva, three teams of researchers are applying different methods to answer the same question: does antimatter fall down, or up? Relativity predicts “down”, just like matter. If it falls up, that could hint at a difference between the two that allowed a matter-dominated universe to form.

Read more

Sep 19, 2018

For Tiny Light Particles, ‘Before’ and ‘After’ Mean Nothing

Posted by in categories: particle physics, quantum physics

In the quantum world, the concepts of ‘before’ and ‘after’ can blend together.

Read more

Sep 18, 2018

This Experiment Will Shoot Ghostly Particles Through Earth, Answer Why We Exist

Posted by in category: particle physics

The study of the subatomic world has revolutionized our understanding of the laws of the universe and given humanity unprecedented insights into deep questions. Historically, these questions have been in the philosophical realm: How did the universe come into existence? Why is the universe the way it is? Why is there something, instead of nothing?

Well, move over philosophy, because science has made a crucial step in building the equipment that will help us answer questions like these. And it involves shooting ghostly particles called neutrinos literally through the Earth over a distance of 800 miles (nearly 1,300 kilometers) from one physics lab to another.

An international group of physicists has announced that they have seen the first signals in a cube-shaped detector called ProtoDUNE. This is a very big stepping stone in the DUNE experiment, which will be America’s flagship particle physics research program for the next two decades. ProtoDUNE, which is the size of a three-story house, is a prototype of the much larger detectors that will be used in the DUNE experiment and today’s (Sept. 18) announcement demonstrates that the technology that was selected works. [The 18 Biggest Unsolved Mysteries in Physics].

Continue reading “This Experiment Will Shoot Ghostly Particles Through Earth, Answer Why We Exist” »

Sep 18, 2018

Modified superconductor synapse reveals exotic electron behavior

Posted by in categories: business, particle physics, quantum physics

Electrons tend to avoid one another as they go about their business carrying current. But certain devices, cooled to near zero temperature, can coax these loner particles out of their shells. In extreme cases, electrons will interact in unusual ways, causing strange quantum entities to emerge.

Read more

Sep 16, 2018

Why Is M-Theory the Leading Candidate for Theory of Everything?

Posted by in categories: cosmology, particle physics, quantum physics

It’s not easy being a “theory of everything.” A TOE has the very tough job of fitting gravity into the quantum laws of nature in such a way that, on large scales, gravity looks like curves in the fabric of space-time, as Albert Einstein described in his general theory of relativity. Somehow, space-time curvature emerges as the collective effect of quantized units of gravitational energy — particles known as gravitons. But naive attempts to calculate how gravitons interact result in nonsensical infinities, indicating the need for a deeper understanding of gravity.

String theory (or, more technically, M-theory) is often described as the leading candidate for the theory of everything in our universe. But there’s no empirical evidence for it, or for any alternative ideas about how gravity might unify with the rest of the fundamental forces. Why, then, is string/M-theory given the edge over the others?

The theory famously posits that gravitons, as well as electrons, photons and everything else, are not point-particles but rather imperceptibly tiny ribbons of energy, or “strings,” that vibrate in different ways. Interest in string theory soared in the mid-1980s, when physicists realized that it gave mathematically consistent descriptions of quantized gravity. But the five known versions of string theory were all “perturbative,” meaning they broke down in some regimes. Theorists could calculate what happens when two graviton strings collide at high energies, but not when there’s a confluence of gravitons extreme enough to form a black hole.

Continue reading “Why Is M-Theory the Leading Candidate for Theory of Everything?” »