БЛОГ

Archive for the ‘particle physics’ category: Page 162

Oct 2, 2016

This Is Your Brain on Quantum Computers

Posted by in categories: mobile phones, neuroscience, particle physics, quantum physics, supercomputing

Machines enrich and enhance our lives, whether it’s the smartphones that allow us to stay connected or the supercomputers that solve our toughest computational problems. Imagine how much more productive and innovative our world will be when computers become infinitely more powerful. Indeed, the growing field of quantum computing may make our current technological capacities look feeble and primitive in comparison. It could even transform the workings of the human brain and revolutionize how we think in ways we can’t begin to imagine.

Today, computers operate at the most basic level by manipulating two states: a zero or a one. In contrast, quantum computers are not limited to two states, but can encode information in multiple states that exist in superposition, also known as quantum bits or qubits.

this-is-your-brain-on-quantum-computers-41

Continue reading “This Is Your Brain on Quantum Computers” »

Oct 1, 2016

‘Sun and rain’ detail how nanoparticles can escape from plastic coatings into the environment

Posted by in categories: health, particle physics

If the 1967 film “The Graduate” were remade today, Mr. McGuire’s famous advice to young Benjamin Braddock would probably be updated to “Plastics … with nanoparticles.” These days, the mechanical, electrical and durability properties of polymers—the class of materials that includes plastics—are often enhanced by adding miniature particles (smaller than 100 nanometers or billionths of a meter) made of elements such as silicon or silver. But could those nanoparticles be released into the environment after the polymers are exposed to years of sun and water—and if so, what might be the health and ecological consequences?

In a recently published paper, researchers from the National Institute of Standards and Technology (NIST) describe how they subjected a commercial nanoparticle-infused coating to NIST-developed methods for accelerating the effects of weathering from ultraviolet (UV) radiation and simulated washings of rainwater. Their results indicate that humidity and exposure time are contributing factors for nanoparticle release, findings that may be useful in designing future studies to determine potential impacts.

In their recent experiment, the researchers exposed multiple samples of a commercially available polyurethane coating containing silicon dioxide nanoparticles to intense UV radiation for 100 days inside the NIST SPHERE (Simulated Photodegradation via High-Energy Radiant Exposure), a hollow, 2-meter (7-foot) diameter black aluminum chamber lined with highly UV reflective material that bears a casual resemblance to the Death Star in the film “Star Wars.” For this study, one day in the SPHERE was equivalent to 10 to 15 days outdoors. All samples were weathered at a constant temperature of 50 degrees Celsius (122 degrees Fahrenheit) with one group done in extremely dry conditions (approximately 0 percent humidity) and the other in humid conditions (75 percent humidity).

Continue reading “‘Sun and rain’ detail how nanoparticles can escape from plastic coatings into the environment” »

Sep 30, 2016

Modern Jedi Physicists Freeze Light In Mid-Air: Bringing Quantum Computers Closer To Reality

Posted by in categories: computing, particle physics, quantum physics

“It’s clear that the light is trapped — there are photons circulating around the atoms,” Everett says. “The atoms absorbed some of the trapped light, but a substantial proportion of the photons were frozen inside the atomic cloud.”

Co-researcher Geoff Campbell from ANU explained that while photons commonly pass by each other at the speed of light without any interactions, atoms interact with each other more freely.

“Corralling a crowd of photons in a cloud of ultra-cold atoms creates more opportunities for them to interact,” Campbell says.

Continue reading “Modern Jedi Physicists Freeze Light In Mid-Air: Bringing Quantum Computers Closer To Reality” »

Sep 30, 2016

Jedi scientists freeze light in midair to bring quantum computers a step closer to reality

Posted by in categories: computing, particle physics, quantum physics

Remember that scene in “The Force Awakens” where the dark side warrior Kylo Ren stops a laser blast in mid-air? In a Canberra laboratory, physicists have managed a feat almost as magical: they froze the movement of light in a cloud of ultracold atoms. This discovery could help bring optical quantum computers from the realms of sci-fi to reality.

The experiment, published in a paper this week, was inspired by a computer stimulation run by lead researcher Jesse Everett from the Australian National University. The researchers used a vaporized cloud of ultracold rubidium atoms to create a light trap, into which they shone infrared lasers. The light trap constantly emitted and re-captured the light.

Continue reading “Jedi scientists freeze light in midair to bring quantum computers a step closer to reality” »

Sep 29, 2016

Nano-scale mirror could be a breakthrough for optical computing

Posted by in categories: computing, nanotechnology, particle physics

Made from fiber that’s over 200 times thinner than a human hair.

Read more

Sep 29, 2016

Stopping Light: Physicists Move Quantum Computers Closer to Reality

Posted by in categories: computing, engineering, particle physics, quantum physics

Hmmm; like the graphic reminds of one of my posts.


In Brief.

Continue reading “Stopping Light: Physicists Move Quantum Computers Closer to Reality” »

Sep 29, 2016

Physicists believe they can create antimatter and matter via lasers… per their calculations

Posted by in category: particle physics

Dramatic advances in laser technologies are enabling novel studies to explore laser-matter interactions at ultrahigh intensity. By focusing high-power laser pulses, electric fields (of orders of magnitude greater than found within atoms) are routinely produced and soon may be sufficiently intense to create matter from light.

Now, intriguing calculations from a research team at the Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS), and reported this week in Physics of Plasmas, explain the production and dynamics of electrons and positrons from ultrahigh-intensity laser-matter interactions.

READ MORE ON AMERICAN INSTITUTE OF PHYSICS | AIP PUBLISHING

Continue reading “Physicists believe they can create antimatter and matter via lasers… per their calculations” »

Sep 27, 2016

KIT team develops ‘quantum optical structure on a chip

Posted by in categories: computing, nanotechnology, particle physics, quantum physics

Researchers at the Karlsruhe Institute of Technology say they have developed a quantum photonic circuit with an electrically driven light source. Described as a ‘complete quantum optical structure on a chip’, the development is said to fulfil one condition for the use of photonic circuits in optical quantum computers.

“Experiments investigating the applicability of optical quantum technology have often claimed whole laboratory spaces,” said Professor Ralph Krupke. “However, if this technology is to be employed meaningfully, it must be accommodated on a minimum of space.”

The light source for the quantum photonic circuit is carbon nanotubes which emit single particles of light when excited by a laser. Because they emit single photons, carbon nanotubes are attractive as light sources for optical quantum computers.

Continue reading “KIT team develops ‘quantum optical structure on a chip” »

Sep 27, 2016

A Primer for Deterministic Thermodynamics and Cryodynamics

Posted by in categories: engineering, existential risks, general relativity, particle physics, philosophy, quantum physics

A Primer for Deterministic Thermodynamics and Cryodynamics

Dedicated to the Founder of Synergetics, Hermann Haken

Otto E. Rossler, Frank Kuske, Dieter Fröhlich, Hans H. Diebner, Thimo Bo¨ hl, Demetris T. Christopoulos, Christophe Letellier

Abstract The basic laws of deterministic many-body systems are summarized in the footsteps of the deterministic approach pioneered by Yakov Sinai. Two fundamental cases, repulsive and attractive, are distinguished. To facilitate comparison, long-range potentials are assumed both in the repulsive case and in the new attractive case. In Part I, thermodynamics – including the thermodynamics of irreversible processes along with chemical and biological evolution – is presented without paying special attention to the ad hoc constraint of long-range repulsion.Otto E. Rossler In Part II, the recently established new fundamental discipline of cryodynamics, based on long-range attraction, is described in a parallel format. In Part III finally, the combination (“dilute hot-plasma dynamics”) is described as a composite third sister discipline with its still largely unknown properties. The latter include the prediction of a paradoxical “double-temperature equilibrium” or at least quasi-equilibrium existing which has a promising technological application in the proposed interactive local control of hot-plasma fusion reactors. The discussion section puts everything into a larger perspective which even touches on cosmology.
Keywords: Sinai gas, chaos theory, heat death, dissipative structures, second arrow, Point Omega, Super Life, paradoxical cooling, antifriction, paradoxical acceleration, Sonnleitner numerical instability, dilute-plasma paradigm, two-temperature equilibrium, ITER, MHD, interactive plasma cooling, McGuire reactor, Hubble law, Zwicky rehabilitated, Perlmutter-Schmidt-Riess wiggle, mean cosmic temperature, van Helmont, Lavoisier, Kant, Poincaré, double-faced Sonnleitner map. (August 26, 2016)

Continue reading “A Primer for Deterministic Thermodynamics and Cryodynamics” »

Sep 27, 2016

Creating antimatter via lasers?

Posted by in categories: particle physics, quantum physics

Now, intriguing calculations from a research team at the Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS), and reported this week in Physics of Plasmas, from AIP Publishing, explain the production and dynamics of electrons and positrons from ultrahigh-intensity laser-matter interactions. In other words: They’ve calculated how to create matter and antimatter via lasers.

Strong electric fields cause electrons to undergo huge radiation losses because a significant amount of their energy is converted into gamma rays — high-energy photons, which are the particles that make up light. The high-energy photons produced by this process interact with the strong laser field and create electron-positron pairs. As a result, a new state of matter emerges: strongly interacting particles, optical fields, and gamma radiation, whose dynamics are governed by the interplay between classical physics phenomena and quantum processes.

A key concept behind the team’s work is based on the quantum electrodynamics (QED) prediction that “a strong electric field can, generally speaking, ‘boil the vacuum,’ which is full of ‘virtual particles,’ such as electron-positron pairs,” explained Igor Kostyukov of IAP RAS. “The field can convert these types of particles from a virtual state, in which the particles aren’t directly observable, to a real one.”

Continue reading “Creating antimatter via lasers?” »