БЛОГ

Archive for the ‘physics’ category: Page 188

Mar 1, 2021

Neil deGrasse Tyson — Mind-Blowing Facts About The Universe- Top Speech

Posted by in categories: alien life, physics

Neil degrasse tyson, science, neil tyson, neil degrasse tyson (organization leader), tyson, neil, astrophysics, degrasse, cosmos, space, universe, earth, startalk, ndt, aliens, mars, comedian, atheist, chuck nice, hayden planetarium, god, physics, astrophysicist, asteroid, comedy, atheism, interview, star talk, mkbhd, stars, time.

Mar 1, 2021

Surprise in Solid-State Physics: Magnetic Effect Without a Magnet

Posted by in categories: materials, physics

Surprise in solid-state physics: The Hall effect, which normally requires magnetic fields, can also be generated in a completely different way – with extreme strength.

Electric current is deflected by a magnetic field – in conducting materials this leads to the so-called Hall effect. This effect is often used to measure magnetic fields. A surprising discovery has now been made at TU Wien, in collaboration with scientists from the Paul Scherrer Institute (Switzerland), McMater University (Canada), and Rice University (USA): an exotic metal made of cerium, bismuth, and palladium was examined and a giant Hall effect was found to be produced by the material, in the total absence of any magnetic field. The reason for this unexpected result lies in the unusual properties of the electrons: They behave as if magnetic monopoles were present in the material. These discoveries have now been published in the scientific magazine PNAS.

A voltage perpendicular to the current.

Feb 23, 2021

What Is Geometric Deep Learning

Posted by in categories: physics, robotics/AI

Bronstein’s paper highlighted how research in many scientific fields such as computational social science, sensors network, physics, and healthcare calls for exploring non-Euclidean data.

Feb 23, 2021

Researchers grow artificial hairs with clever physics trick

Posted by in category: physics

Things just got hairy at Princeton.

Feb 20, 2021

Unprecedented Map of the Sun’s Magnetic Field Created by CLASP2 Space Experiment

Posted by in categories: energy, physics, space

Every day space telescopes provide spectacular images of the solar activity. However, their instruments are blind to its main driver: the magnetic field in the outer layers of the solar atmosphere, where the explosive events that occasionally affect the Earth occur. The extraordinary observations of the polarization of the Sun’s ultraviolet light achieved by the CLASP2 mission have made it possible to map the magnetic field throughout the entire solar atmosphere, from the photosphere until the base of the extremely hot corona. This investigation, published today in the journal Science Advances, has been carried out by the international team responsible for this suborbital experiment, which includes several scientists of the POLMAG group of the Instituto de Astrofísica de Canarias (IAC).

The chromosphere is a very important region of the solar atmosphere spanning a few thousand kilometers between the relatively thin and cool photosphere (with temperatures of a few thousand degrees) and the hot and extended corona (with temperatures above a million degrees). Although the temperature of the chromosphere is about one hundred times lower than that of the corona, the chromosphere has a far higher density, and thus much more energy is required to sustain it. Moreover, the mechanical energy necessary to heat the corona needs to traverse the chromosphere, making it a crucial interface region for the solution of many of the key problems in solar and stellar physics. One of the current scientific challenges is to understand the origin of the violent activity of the solar atmosphere, which on some occasions perturb the Earth’s magnetosphere with serious consequences for our present technological world.

Feb 18, 2021

Researchers construct the smallest microchips yet using graphene nano-origami

Posted by in categories: computing, nanotechnology, physics, space

Physicists from the University of Sussex have created what they called the tiniest microchips yet. The little microchips are made using graphene and other 2D materials and a form of “nano-origami.” The technique used in creating the tiny microchips marks the first time any researchers have been able to do this.

Researchers succeeded in making the tiny microchips by creating kinks in the structure of graphene to make the nanomaterial behave like a transistor. In their study, the team showed that when a graphene strip is crinkled in a specific way, it behaves like a microchip only about 100 times smaller than a conventional microchip. New construction methods are needed for microchips because traditional semiconducting technology is at the limit of what it can do.

The researchers believe that using the materials in their technique will make computer chips smaller and faster. The technology is dubbed “straintronics” and uses nanomaterials rather than electronics, allowing space for more chips inside a given device. The researchers believe everything we want to do with computers to speeding them up can be done by crinkling graphene.

Feb 18, 2021

First Black Hole Ever Detected – Cygnus X-1 – Is Much More Massive Than We Thought

Posted by in categories: cosmology, physics

New observations of the first black hole ever detected have led astronomers to question what they know about the Universe’s most mysterious objects.

Published today (February 182021) in the journal Science, the research shows the system known as Cygnus X-1 contains the most massive stellar-mass black hole ever detected without the use of gravitational waves.

Cygnus X-1 is one of the closest black holes to Earth. It was discovered in 1964 when a pair of Geiger counters were carried on board a sub-orbital rocket launched from New Mexico.

Feb 16, 2021

The Expanse Physics is Kind of Right With Circling Ships

Posted by in category: physics

Check out Dementikko’s video!

If you want to mess around with the code:
https://github.com/CheerfulUser/Chetzemoka_path/tree/main

Feb 12, 2021

AEgIS on track to test freefall of antimatter

Posted by in category: physics

It’s a fundamental law of physics that even the most ardent science-phobe can define: matter falls down under gravity. But what about antimatter, which has the same mass but opposite electrical charge and spin? According to Einstein’s general theory of relativity, gravity should treat matter and antimatter identically. Finding even the slightest difference in their free-fall rate would therefore lead to a revolution in our understanding. While the free fall of matter has been measured with an accuracy of around one part in 100 trillion, no direct measurement for antimatter has yet been performed due to the difficulty in producing and containing large quantities of it.

Feb 12, 2021

New Machine Learning Theory Raises Questions About the Very Nature of Science

Posted by in categories: information science, physics, robotics/AI, science, space

A novel computer algorithm, or set of rules, that accurately predicts the orbits of planets in the solar system could be adapted to better predict and control the behavior of the plasma that fuels fusion facilities designed to harvest on Earth the fusion energy that powers the sun and stars.

The algorithm, devised by a scientist at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), applies machine learning, the form of artificial intelligence (AI) that learns from experience, to develop the predictions. “Usually in physics, you make observations, create a theory based on those observations, and then use that theory to predict new observations,” said PPPL physicist Hong Qin, author of a paper detailing the concept in Scientific Reports. “What I’m doing is replacing this process with a type of black box that can produce accurate predictions without using a traditional theory or law.”

Qin (pronounced Chin) created a computer program into which he fed data from past observations of the orbits of Mercury, Venus, Earth, Mars, Jupiter, and the dwarf planet Ceres. This program, along with an additional program known as a “serving algorithm,” then made accurate predictions of the orbits of other planets in the solar system without using Newton’s laws of motion and gravitation. “Essentially, I bypassed all the fundamental ingredients of physics. I go directly from data to data,” Qin said. “There is no law of physics in the middle.”