БЛОГ

Archive for the ‘physics’ category: Page 191

Jan 25, 2021

Quanta Magazine

Posted by in categories: alien life, physics

If our universe is a bubble that inflated inside a larger multiverse, it might bear scars from collisions with nearby bubbles.


What lies beyond all we can see? The question may seem unanswerable. Nevertheless, some cosmologists have a response: Our universe is a swelling bubble. Outside it, more bubble universes exist, all immersed in an eternally expanding and energized sea — the multiverse.

The idea is polarizing. Some physicists embrace the multiverse to explain why our bubble looks so special (only certain bubbles can host life), while others reject the theory for making no testable predictions (since it predicts all conceivable universes). But some researchers expect that they just haven’t been clever enough to work out the precise consequences of the theory yet.

Continue reading “Quanta Magazine” »

Jan 25, 2021

Wormholes may be lurking in the universe — and new studies are proposing ways of finding them

Posted by in categories: cosmology, information science, physics

Very interesting.


Albert Einstein’s theory of general relativity profoundly changed our thinking about fundamental concepts in physics, such as space and time. But it also left us with some deep mysteries. One was black holes, which were only unequivocally detected over the past few years. Another was “wormholes” – bridges connecting different points in spacetime, in theory providing shortcuts for space travellers.

Continue reading “Wormholes may be lurking in the universe — and new studies are proposing ways of finding them” »

Jan 24, 2021

‘Spooky action at a distance’ could create a nearly perfect clock

Posted by in categories: cosmology, physics

Physicists imagine a day when they will be able to design a clock that’s so precise, it can detect dark matter.

Jan 23, 2021

Stanford AI Technology Detects Hidden Earthquakes – May Provide Warning of Big Quakes

Posted by in categories: information science, physics, robotics/AI, transportation

New technology from Stanford scientists finds long-hidden quakes, and possible clues about how earthquakes evolve.

Tiny movements in Earth’s outermost layer may provide a Rosetta Stone for deciphering the physics and warning signs of big quakes. New algorithms that work a little like human vision are now detecting these long-hidden microquakes in the growing mountain of seismic data.

Measures of Earth’s vibrations zigged and zagged across Mostafa Mousavi’s screen one morning in Memphis, Tenn. As part of his PhD studies in geophysics, he sat scanning earthquake signals recorded the night before, verifying that decades-old algorithms had detected true earthquakes rather than tremors generated by ordinary things like crashing waves, passing trucks or stomping football fans.

Jan 23, 2021

Physicists Spotted the Ghosts of Black Holes from Another Universe

Posted by in categories: cosmology, physics

Circa 2018 o.o!


We are not living in the first universe. There were other universes, in other eons, before ours, a group of physicists has said. Like ours, these universes were full of black holes. And we can detect traces of those long-dead black holes in the cosmic microwave background (CMB) — the radioactive remnant of our universe’s violent birth.

At least, that’s the somewhat eccentric view of the group of theorists, including the prominent Oxford University mathematical physicist Roger Penrose (also an important Stephen Hawking collaborator). Penrose and his acolytes argue for a modified version of the Big Bang.

Continue reading “Physicists Spotted the Ghosts of Black Holes from Another Universe” »

Jan 21, 2021

Lasers turn pure aluminum … ‘gold’

Posted by in categories: chemistry, physics

The ultimate goal of the Old World alchemist was to turn inexpensive metals into gold. Modern-day physicists at the University of Rochester’s Institute of Optics (Rochester, NY), have turned aluminum and other metals gold—in color if not chemistry. A femtosecond laser processing technique created by professor Chunlei Guo and his assistant Anatoliy Vorobeyv alters the surface properties of aluminum, platinum, titanium, tungsten, silver, and gold to create tints of gold, blue, gray, black, and even multicolored irridescence.

Jan 20, 2021

Multidimensional coherent spectroscopy reveals triplet state coherences in cesium lead-halide perovskite nanocrystals

Posted by in categories: chemistry, nanotechnology, physics, solar power, sustainability

Advanced optoelectronics require materials with newly engineered characteristics. Examples include a class of materials named metal-halide perovskites that have tremendous significance to form perovskite solar cells with photovoltaic efficiencies. Recent advances have also applied perovskite nanocrystals in light-emitting devices. The unusually efficient light emission of cesium lead-halide perovskite may be due to a unique excitonic fine structure made of three bright triplet states that minimally interact with a proximal dark singlet state. Excitons are electronic excitations responsible for the emissive properties of nanostructured semiconductors, where the lowest-energy excitonic state is expected to be long lived and hence poorly emitting (or ‘dark’).

In a new report now published in Science Advances, Albert Liu and a team of scientists in physics and chemistry at the University of Michigan, U.S., and Campinas State University, Brazil, used multidimensional coherent spectroscopy at cryogenic (ultra-cold) temperatures to study the fine structure without isolating the cube-shaped single . The work revealed coherences (wave properties relative to space and time) involving the triplet states of a cesium lead-iodide (CsPbI3) nanocrystal ensemble. Based on the measurements of triplet and inter-triplet coherences, the team obtained a unique exciton fine structure level ordering composed of a dark state, energetically positioned within the bright triplet manifold.

Jan 20, 2021

Ten computer codes that transformed science

Posted by in categories: biological, climatology, computing, physics, science

Although no list like this can be definitive, we polled dozens of researchers over the past year to develop a diverse line-up of ten software tools that have had a big impact on the world of science. You can weigh in on our choices at the end of the story.


From Fortran to arXiv.org, these advances in programming and platforms sent biology, climate science and physics into warp speed.

Jan 16, 2021

Towards Exawatt-Class Lasers: New Concept for Next-Generation Ultra-Intense Lasers

Posted by in categories: cosmology, physics, robotics/AI

Researchers from the Max Planck Society assessed humans’ capabilities for controlling killer AI. Read the details.


Researchers from Osaka University propose a concept for next-generation ultra-intense lasers, possibly increasing the current record from 10 Petawatts to 500 Petawatts.

Ultra-intense lasers with ultra-short pulses and ultra-high energies are powerful tools for exploring unknowns in physics, cosmology, material science, etc. With the help of the famous technology “Chirped Pulse Amplification (CPA)” (2018 Nobel Prize in Physics), the current record has reached 10 Petawatts (or 1016 Watts). In a study recently published in Scientific Reports, researchers from Osaka University proposed a concept for next-generation ultra-intense lasers with a simulated peak power up to the Exawatt class (1 Exawatt equals 1000 Petawatts).

Continue reading “Towards Exawatt-Class Lasers: New Concept for Next-Generation Ultra-Intense Lasers” »

Jan 15, 2021

Examination of Theia 456 finds its nearly 500 stars were born at same time

Posted by in categories: physics, space travel

The Milky Way houses 8292 recently discovered stellar streams—all named Theia. But Theia 456 is special.

A stellar stream is a rare linear pattern—rather than a cluster—of stars. After combining multiple datasets captured by the Gaia space telescope, a team of astrophysicists found that all of Theia 456’s 468 stars were born at the same time and are traveling in the same direction across the sky.

“Most stellar clusters are formed together,” said Jeff Andrews, a Northwestern University astrophysicist and member of the team. “What’s exciting about Theia 456 is that it’s not a small clump of stars together. It’s long and stretched out. There are relatively few streams that are nearby, young and so widely dispersed.”