БЛОГ

Archive for the ‘chemistry’ category: Page 323

Sep 28, 2015

NASA confirms that liquid water flows on Mars

Posted by in categories: chemistry, humor, space

Liquid water exists on the surface of Mars during the planet’s warmer seasons, according to new research published in Nature Geosciences . This revelation comes from new spectral data gathered by NASA’s Mars Reconnaissance Orbiter (MRO), a spacecraft that studies the planet from orbit. The orbiter analyzed the chemistry of weird dark streaks that have been known to appear and disappear seasonally on the Martian surface. The analysis confirms that these streaks are formed by briny — or salty — water flowing downhill on Mars.

NASA has advertised these findings as the solution to a major Mars mystery: does the Red Planet truly have liquid water on its surface? Researchers have known that water exists in ice form on Mars, but it’s never been confirmed if water can remain in a liquid state. The space agency is claiming that we now have that answer.

This isn’t the first study to suggest liquid water is present in some form on Mars. Scientists have theorized for years that Mars was once home to a large ocean more than 4 billion years ago. And recent findings from the Mars Curiosity rover suggest that liquid water exists just underneath the Martian surface. The discovery of water on Mars has almost become a joke among planetary scientists. Alfred McEwen, a planetary geologist at Planetary Image Research Laboratory who also worked on this research, wrote in Scientific American that the studies have become extremely commonplace: “Congratulations — you’ve discovered water on Mars for the 1,000th time!” he joked.

Read more

Sep 26, 2015

The Chemistry Behind The Battery That Could Outperform Tesla’s Powerwall

Posted by in categories: chemistry, sustainability

A new type of battery could provide better storage for renewable energy than Tesla’s Powerwall. Here’s how it works.

Read more

Sep 22, 2015

Calculations with nanoscale smart particles

Posted by in categories: biotech/medical, chemistry, computing, nanotechnology, particle physics

Researchers from the Institute of General Physics of the Russian Academy of Sciences, the Institute of Bioorganic Chemistry of the Russian Academy of Sciences and MIPT have made an important step towards creating medical nanorobots. They discovered a way of enabling nano- and microparticles to produce logical calculations using a variety of biochemical reactions.

Details of their are given in the journal Nature Nanotechnology. It is the first experimental publication by an exclusively Russian team in one of the most cited scientific magazines in many years.

The paper draws on the idea of computing using biomolecules. In electronic circuits, for instance, logical connectives use current or voltage (if there is voltage, the result is 1, if there is none, it’s 0). In biochemical systems, the result can a given substance.

Read more

Sep 21, 2015

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals

Posted by in categories: biotech/medical, chemistry, computing, engineering, materials, nanotechnology

DNA has garnered attention for its potential as a programmable material platform that could spawn entire new and revolutionary nanodevices in computer science, microscopy, biology, and more. Researchers have been working to master the ability to coax DNA molecules to self assemble into the precise shapes and sizes needed in order to fully realize these nanotechnology dreams.

For the last 20 years, scientists have tried to design large DNA crystals with precisely prescribed depth and complex features – a design quest just fulfilled by a team at Harvard’s Wyss Institute for Biologically Inspired Engineering. The team built 32 DNA crystals with precisely-defined depth and an assortment of sophisticated three-dimensional (3D) features, an advance reported in Nature Chemistry.

The team used their “DNA-brick self-assembly” method, which was first unveiled in a 2012 Science publication when they created more than 100 3D complex nanostructures about the size of viruses. The newly-achieved periodic crystal structures are more than 1000 times larger than those discrete DNA brick structures, sizing up closer to a speck of dust, which is actually quite large in the world of DNA nanotechnology.

Read more

Sep 12, 2015

Scientists discover cause of and potential treatment for muscle weakness and loss due to aging

Posted by in categories: chemistry, life extension

As we grow older, we lose strength and muscle mass. However, the cause of age-related muscle weakness and atrophy has remained a mystery.

Scientists at the University of Iowa have discovered the first example of a protein that causes and loss during aging. The protein, ATF4, is a transcription factor that alters gene expression in , causing reduction of , strength, and mass. The UI study also identifies two natural compounds, one found in apples and one found in green tomatoes, which reduce ATF4 activity in aged skeletal muscle. The findings, which were published online Sept. 3 in the Journal of Biological Chemistry, could lead to new therapies for age-related muscle weakness and atrophy.

Read more

Sep 1, 2015

DNA-guided 3-D printing of human tissue is unveiled

Posted by in categories: 3D printing, biotech/medical, chemistry

A UCSF-led team has developed a technique to build tiny models of human tissues, called organoids, more precisely than ever before using a process that turns human cells into a biological equivalent of LEGO bricks. These mini-tissues in a dish can be used to study how particular structural features of tissue affect normal growth or go awry in cancer. They could be used for therapeutic drug screening and to help teach researchers how to grow whole human organs.

The new technique — called DNA Programmed Assembly of Cells (DPAC) and reported in the journal Nature Methods on August 31, 2015 — allows researchers to create arrays of thousands of custom-designed organoids, such as models of human mammary glands containing several hundred cells each, which can be built in a matter of hours.

There are few limits to the tissues this technology can mimic, said Zev Gartner, PhD, the paper’s senior author and an associate professor of pharmaceutical chemistry at UCSF. “We can take any cell type we want and program just where it goes. We can precisely control who’s talking to whom and who’s touching whom at the earliest stages. The cells then follow these initially programmed spatial cues to interact, move around, and develop into tissues over time.”

Read more

Aug 20, 2015

Scientists successfully grow human brain equivalent to 5-week-old foetus in the lab

Posted by in categories: chemistry, neuroscience

Growing brain tissue in a dish has been done before, but bold new research announced this week shows that scientists’ ability to create human brains in laboratory settings has come a long way quickly.

Researchers at the Ohio State University in the US claim to have developed the most complete laboratory-grown human brain ever, creating a model with the brain maturity of a 5-week-old foetus. The brain, which is approximately the size of a pencil eraser, contains 99 percent of the genes that would be present in a natural human foetal brain.

“It not only looks like the developing brain, its diverse cell types express nearly all genes like a brain,” Rene Anand, professor of biological chemistry and pharmacology at Ohio State and lead researcher on the brain model, said in a statement.

Read more

Aug 7, 2015

Chemistry 3D Printer Synthesizes Rare Molecules

Posted by in categories: 3D printing, chemistry

Need an obscure medicinal compound found only in a jungle plant? Just print it.

Read more

Aug 2, 2015

Synthetic biology – the next big thing

Posted by in categories: biotech/medical, chemistry, nanotechnology

Synthetic biology programming microorganisms to perform some new functions. Genes are made out of DNA; synthetic biology involves inserting synthetic genes that might not have existed before into yeast and reprogramming them to make a new chemistry or things not made naturally by biology. Each gene codes for an enzyme. One can program a new set of enzymes and convert them to intermediate products. If you go through five or even 15 steps, you can get a final product – a polymer, a new drug – creating a chemical factory inside a cell. This is much better than nanotechnology, because in synthetic biology, we get down to molecular size…


Prof. Joseph Jacobson, a leading physicist at the Massachusetts Institute of Technology, is not only the inventor of e-ink but also a mover in creating artificial DNA to eventually cure diseases.

Read more

Aug 2, 2015

Affordable genetic diagnostic technique for target DNA analysis developed

Posted by in categories: biotech/medical, chemistry, engineering, genetics

Professor Hyun-Gyu Park of the Department of Chemical and Biomolecular Engineering at Korea Advanced Institute of Science and Technology (KAIST) has developed a technique to analyze various target DNAs using an aptamer, a DNA fragment that can recognize and bind to a specific protein or enzyme. This technique will allow the development of affordable genetic diagnosis for new bacteria or virus, such as Middle Ease Respiratory Syndrome (MERS). The research findings were published in the June issue of Chemical Communications, issued by the Royal Society of Chemistry in the United Kingdom. The paper was selected as a lead article of the journal.

Read more