БЛОГ

Archive for the ‘computing’ category: Page 371

Jun 10, 2022

Whole human genome sequencing for $100

Posted by in categories: biotech/medical, chemistry, computing, genetics, health

“When the Human Genome Project began in 1990, it had a projected budget of $3 billion. […] Now, one company claims to have achieved the major milestone of whole genome sequencing for just $100.”


Ultima Genomics, a biotech company based in California, has emerged from stealth mode with a new high-throughput, low-cost sequencing platform that it claims can deliver a $100 genome.

When the Human Genome Project began in 1990, it had a projected budget of $3 billion. Some researchers believed it would take centuries to map all 20,000+ genes and to determine the sequence of chemical base pairs making up DNA, though in the end it took 13 years. Since then, genome sequencing has undergone technology and cost improvements at a rate faster than Moore’s Law (a long-term trend in the computer industry that involves a doubling of performance every two years). What used to require billions of dollars and many years of work is now several orders of magnitude cheaper and possible in a matter of hours.

Continue reading “Whole human genome sequencing for $100” »

Jun 10, 2022

Room-temperature molecular switch discovery paves the way for faster computers, longer-lasting batteries

Posted by in categories: computing, mathematics, quantum physics

University of Queensland scientists have cracked a problem that’s frustrated chemists and physicists for years, potentially leading to a new age of powerful, efficient, and environmentally friendly technologies.

Using , Professor Ben Powell from UQ’s School of Mathematics and Physics has discovered a “recipe” which allows molecular switches to work at room temperature.

“Switches are materials that can shift between two or more states, such as on and off or 0 and 1, and are the basis of all digital technologies,” Professor Powell said. “This discovery paves the way for smaller and more powerful and energy efficient technologies. You can expect batteries will last longer and computers to run faster.”

Jun 10, 2022

New Microchip Based on Biomolecules is No Alien Technology

Posted by in categories: biotech/medical, computing

Roswell Biotechnologies wants you to believe its new chip will revolutionize the detection of viruses, DNA, and more. But it still has to prove itself.

Jun 10, 2022

Quantum computers proved to have ‘quantum advantage’ on some tasks

Posted by in categories: computing, mathematics, quantum physics

View insights.


Not only do quantum computers have the edge over classical computers on some tasks, but they are also exponentially faster, according to a new mathematical proof.

Jun 10, 2022

How Can a Quantum Computer Catch its Own Errors in Calculations?

Posted by in categories: computing, particle physics, quantum physics

View insights.


A collection of 16 qubits has been organized in such a way that they may be able to operate any computation without error. It is an important step toward constructing quantum computers that outperform standard ones.

When completing any task, a quantum computer consisting of charged atoms can detect its own faults. Because conventional computers constantly detect and rectify their own flaws, quantum computers will need to do the same in order to fully outperform them. Nevertheless, quantum effects can cause errors to propagate rapidly through the qubits, or quantum bits, that comprise these devices.

Continue reading “How Can a Quantum Computer Catch its Own Errors in Calculations?” »

Jun 9, 2022

Single-molecule optoelectronic devices

Posted by in categories: computing, electronics

Single-molecule electronic devices, which use single molecules or molecular monolayers as their conductive channels, offer a new strategy to resolve the miniaturization and functionalization bottlenecks encountered by traditional semiconductor electronic devices. These devices have many inherent advantages, including adjustable electronic characteristics, ease of availability, functional diversity and so on.

To date, single-molecule devices with a variety of functions have been realized, including diodes, field-effect devices and . In addition to their important applications in the field of functional devices, single-molecule devices also provide a unique platform to explore the intrinsic properties of matters at the .

Regulating the electrical properties of single-molecule devices is still a key step to further advance the development of molecular electronics. To effectively adjust the molecular properties of the device, it is necessary to clarify the interactions between electron transport in single-molecule devices and external fields, such as external temperature, , , and . Among these fields, the use of light to adjust the electronic properties of single-molecule devices is one of the most important fields, known as “single-molecule optoelectronics.”

Jun 9, 2022

How Apple’s M2 chip builds on the M1 with small but meaningful upgrades

Posted by in categories: computing, mobile phones

How Apple’s M2 chip builds on the M1 to take on Intel and AMD.


The M1 is a great chip. Essentially an “X” variant of the A14 chip, it takes the iPhone and iPad processor and doubles the high-performance CPU cores, GPU cores, and memory bandwidth. The M1 chip is so good it’s equally amazing for tablets and thin-and-light laptops as it is for desktops, easily outperforming any competing chip with similar power draw and offering similar performance to processors that use at least twice as much energy.

Now a year and a half later, and after delivering three more powerful variants of the M1 (M1 Pro, M1 Max, and M1 Ultra), it’s time for the next generation. Announced at WWDC and appearing first in the new MacBook Air and 13-inch MacBook Pro, the M2 is essentially the system-on-chip we predicted it would be: what the M1 is to the A14, the M2 is to the A15. It’s made of 20 billion transistors, 25 percent more than M1, and while it’s still built using a 5nm manufacturing process, it’s a new enhanced “second-generation” 5nm process.

Continue reading “How Apple’s M2 chip builds on the M1 with small but meaningful upgrades” »

Jun 9, 2022

When will I be able to upload my brain to a computer?

Posted by in categories: computing, neuroscience

To capture the information that a brain contains, you need to cut it into billions and billions of slices.

Jun 8, 2022

Ingenuity has Lost its Sense of Direction, but It’ll Keep on Flying

Posted by in categories: computing, information science, space

The Ingenuity chopper on Mars has lost an instrument that helps it navigate. Flight controllers have found a work-around.


Things are getting challenging for the Ingenuity helicopter on Mars. The latest news from Håvard Grip, its chief pilot, is that the “Little Chopper that Could” has lost its sense of direction thanks to a failed instrument. Never mind that it was designed to make only a few flights, mostly in Mars spring. Or that it’s having a hard time staying warm now that winter is coming. Now, one of its navigation sensors, called an inclinometer, has stopped working. It’s not the end of the world, though. “A nonworking navigation sensor sounds like a big deal – and it is – but it’s not necessarily an end to our flying at Mars,” Grip wrote on the Mars Helicopter blog on June 6. It turns out that the controllers have options.

Like other NASA planetary missions, Ingenuity sports a fair amount of redundancy in its systems. It has an inertial measurement unit (IMU) that measures accelerations and angular rates of ascent and descent in three directions. In addition, there’s a laser rangefinder that measures the distance to the ground. Finally, the chopper has a navigation camera. It gives visual evidence of where Ingenuity is during flight or on the ground. An algorithm takes data from these instruments and uses it during flight. But, it needs to know the chopper’s roll and pitch attitude, and that’s what the inclinometer supplies.

Continue reading “Ingenuity has Lost its Sense of Direction, but It’ll Keep on Flying” »

Jun 8, 2022

Over the coming weeks

Posted by in categories: computing, space

we will be bringing you extracts from 9 trailblazer profiles from our new Neurotech report – dynamic and innovative companies we feel are driving this exciting space. Each profile includes a flagship product deep dive which offers a forensic consideration of product development, efficacy, target market, channels to market, success factors, IP and funding.

AE was born of the vision to increase human agency for end users through the technology the group develops for their partners and their wholly-owned and operated skunkworks companies. Running a highly collaborative agile process, these efforts are extended by investing heavily in the brain computer interface (BCI) space. BCI represents, to AE, the pinnacle of agency increasing tech with massive implications for users and the whole of humanity.