БЛОГ

Archive for the ‘computing’ category: Page 407

Apr 8, 2020

New ‘refrigerator’ super-cools molecules to nanokelvin temperatures

Posted by in categories: computing, particle physics, quantum physics

For years, scientists have looked for ways to cool molecules down to ultracold temperatures, at which point the molecules should slow to a crawl, allowing scientists to precisely control their quantum behavior. This could enable researchers to use molecules as complex bits for quantum computing, tuning individual molecules like tiny knobs to carry out multiple streams of calculations at a time.

While scientists have super-cooled atoms, doing the same for , which are more complex in their behavior and structure, has proven to be a much bigger challenge.

Now MIT physicists have found a way to cool molecules of lithium down to 200 billionths of a Kelvin, just a hair above absolute zero. They did so by applying a technique called collisional cooling, in which they immersed molecules of cold sodium lithium in a cloud of even colder sodium atoms. The acted as a refrigerant to cool the molecules even further.

Apr 8, 2020

New “refrigerator” super-cools molecules to nanokelvin temperatures

Posted by in categories: computing, particle physics, quantum physics

“Collisional cooling has been the workhorse for cooling atoms,” adds Nobel Prize laureate Wolfgang Ketterle, the John D. Arthur professor of physics at MIT. “I wasn’t convinced that our scheme would work, but since we didn’t know for sure, we had to try it. We know now that it works for cooling sodium lithium molecules. Whether it will work for other classes of molecules remains to be seen.” MIT School of Science, Harvard — MIT Center for Ultracold Atoms, RLE at MIT — Research Laboratory of Electronics at MIT, #research #supercooledatoms #nanokelvin #WolfgangKetterle


Technique may enable molecule-based quantum computing.

Apr 8, 2020

From Quantum Optics to Quantum Technologies

Posted by in categories: computing, quantum physics

Abstract: Quantum optics is the study of the intrinsically quantum properties of light. During the second part of the 20th century experimental and theoretical progress developed together; nowadays quantum optics provides a testbed of many fundamental aspects of quantum mechanics such as coherence and quantum entanglement. Quantum optics helped trigger, both directly and indirectly, the birth of quantum technologies, whose aim is to harness non-classical quantum effects in applications from quantum key distribution to quantum computing. Quantum light remains at the heart of many of the most promising and potentially transformative quantum technologies. In this review, we celebrate the work of Sir Peter Knight and present an overview of the development of quantum optics and its impact on quantum technologies research. We describe the core theoretical tools developed to express and study the quantum properties of light, the key experimental approaches used to control, manipulate and measure such properties and their application in quantum simulation, and quantum computing.

Apr 8, 2020

Graced With Knowledge, Mathematicians Seek to Understand

Posted by in categories: computing, mathematics

A landmark proof in computer science has also solved an important problem called the Connes embedding conjecture. Mathematicians are working to understand it.

Apr 7, 2020

Investors Pour $215 Million Into Quantum Computer Promising 1 Million Qubits – Enough Processing Power to Reshape Nearly Every Industry

Posted by in categories: computing, quantum physics

A new quantum computer under development is slated to have 1 million qubits – significantly more powerful than Google’s most recent milestone. PsiQuantum Corp., a Silicon Valley company, is developing a photon-based commercial quantum computer that runs on light. The company has raised $215 million from investors with participation from BlackRock Advisors, Founders Fund, Atomico and Redpoint Ventures. The company’s ote.

While a working prototype is estimated to be years away, the advanced technology is aiming to blow away the competition with a far superior machine.

Continue reading “Investors Pour $215 Million Into Quantum Computer Promising 1 Million Qubits – Enough Processing Power to Reshape Nearly Every Industry” »

Apr 7, 2020

Researchers Demonstrate Microwave-Optical Entanglement via Mechanical Interface

Posted by in categories: computing, quantum physics

#quantum #photonics


COPENHAGEN, April 3, 2020 — Using lasers, researchers at the Niels Bohr Institute at the University of Copenhagen have developed a way to entangle electromagnetic fields from microwave radiation and optical beams. Creating entanglement between microwave and optical fields could help scientists solve the challenge of sharing entanglement between two distant quantum computers operating in the microwave regime.

Apr 6, 2020

Quantum Computing Startup Raises $215 Million for Faster Device

Posted by in categories: computing, quantum physics

PsiQuantum’s photon-based model is still years away, but the company says it’ll be more powerful than Google’s or IBM’s.

Apr 6, 2020

PIPES Researchers Demonstrate Optical Interconnects to Improve Performance of Digital Microelectronics

Posted by in categories: computing, internet

Under DARPA’s Photonics in the Package for Extreme Scalability (PIPES) program, researchers from Intel and Ayar Labs have demonstrated early progress towards improving chip connectivity with photons – or light. Signaling over optical fibers enables the internet today and optical transceivers are ubiquitous in data centers, yet digital systems still rely upon the movement of electrons over metal wires to push data between integrated circuits (ICs) on a board. Increasingly, the limitations of electrical signaling from the chip package restrict overall bandwidth and signaling efficiency, throttling the performance of advanced systems. The PIPES program is exploring ways to expand the use of optical components to address these constraints and enable digital microelectronics with new levels of performance.

Researchers from Intel and Ayar Labs working on PIPES have successfully replaced the traditional electrical input/output (I/O) of a state-of-the-art field programmable gate array (FPGA) with efficient optical signaling interfaces. The demonstration leverages an optical interface developed by Ayar Labs called TeraPHY, an optical I/O chiplet that replaces electrical serializer/deserializer (SERDES) chiplets. These SERDES chiplets traditionally compensate for limited I/O when there is a need for fast data movement, enabling high-speed communications and other capabilities. Using Intel’s advanced packaging and interconnect technology, the team integrated TeraPHY and the Intel FPGA core within a single package, creating a multi-chip module (MCM) with in-package optics. The integrated solution substantially improves interconnect reach, efficiency, and latency – enabling high-speed data links with single mode optical fibers coming directly from the FPGA.

Apr 5, 2020

Extremely small magnetic nanostructures with invisibility cloak imaged

Posted by in categories: computing, nanotechnology, particle physics, space

:00000


In novel concepts of magnetic data storage, it is intended to send small magnetic bits back and forth in a chip structure, store them densely packed and read them out later. The magnetic stray field generates problems when trying to generate particularly tiny bits. Now, researchers at the Max Born Institute (MBI), the Massachusetts Institute of Technology (MIT) and DESY were able to put an “invisibility cloak” over the magnetic structures. In this fashion, the magnetic stray field can be reduced in a fashion allowing for small yet mobile bits. The results were published in Nature Nanotechnology.

For physicists, magnetism is intimately coupled to rotating motion of electrons in atoms. Orbiting around the atomic nucleus as well as around their own axis, electrons generate the magnetic moment of the atom. The magnetic stray field associated with that magnetic moment is the property we know from e.g. a bar magnet we use to fix notes on pinboard. It is also the magnetic stray field that is used to read the information from a magnetic hard disk drive. In today’s hard disks, a single magnetic bit has a size of about 15 × 45 nanometer, about 1,000,000,000,000 of those would fit on a stamp.

One vision for a novel concept to store data magnetically is to send the magnetic bits back and forth in a memory chip via current pulses, in order to store them at a suitable place in the chip and retrieve them later. Here, the magnetic stray field is a bit of a curse, as it prevents that the bits can be made smaller for even denser packing of the information. On the other hand, the magnetic moment underlying the stray field is required to be able to move the structures around.

Apr 5, 2020

Johns Hopkins biologist and computer scientist James Taylor dies at 40

Posted by in category: computing

He is remembered for his ‘transformational’ and ‘immeasurable’ contributions to scientific research.

SARS-CoV-2 virus particles, isolated from a patient.