БЛОГ

Archive for the ‘genetics’ category: Page 134

Jun 21, 2022

Biochemists use new tool to control mRNA

Posted by in categories: biotech/medical, chemistry, genetics

A team of researchers at the Institute of Biochemistry at Münster University discovered that by using so-called FlashCaps they were able to control the translation of mRNA by means of light. The results have been published in Nature Chemistry.

DNA () is a long chain of molecules composed of many individual components, and it forms the basis of life on Earth. The function of DNA is to store all genetic information. The translation of this into proteins—which an organism needs to function, develop and reproduce—takes place via mRNA (messenger ribonucleic acid). The DNA is transcribed to mRNA, and the mRNA in turn is translated into proteins (protein biosynthesis). In other words, the mRNA functions as an information carrier. Biochemists at the University of Münster have now developed a new biochemical tool that is able to to control the translation of RNA with the aid of light. These so-called FlashCaps enable researchers to control a variety of processes in cells both spatially and temporally and, as a result, to determine basic functions of proteins.

Jun 21, 2022

Switching DNA functions on and off with light

Posted by in categories: biotech/medical, chemistry, genetics

DNA is the basis of life on earth. The function of DNA is to store all the genetic information an organism needs to develop, function and reproduce. It is essentially a biological instruction manual found in every cell. Biochemists at the University of Münster have now developed a strategy for controlling the biological functions of DNA with the aid of light. This enables researchers to better understand and control the processes that take place in the cell—for example, epigenetics, the key chemical change and regulatory lever in DNA. The results have been published in the journal Angewandte Chemie.

The cell’s functions depend on enzymes. Enzymes are proteins that carry out in the cell. They help to synthesize metabolic products, make copies of the DNA molecules, convert energy for the cell’s activities, change DNA epigenetically and break down certain molecules. A team of researchers headed by Prof. Andrea Rentmeister from the Institute of Biochemistry at the University of Münster used a so-called enzymatic cascade reaction to understand and track these functions better. This sequence of successive reaction steps involving different enzymes makes it possible to transfer so-called photocaging groups—chemical groups that can be removed by means of irradiation with light—to DNA. Previously, studies had shown that only small residues (small modifications such as methyl groups) could be transferred selectively to DNA, RNA (ribonucleic acid) or proteins.

“As a result of our work, it is now possible to transfer larger residues or modifications such as the photocaging groups just mentioned,” explains Nils Klöcker, one of the lead authors of the study and a Ph.D. student at the Institute of Biochemistry. Working together with structural biologist Prof. Daniel Kümmel, who also works at the Institute of Biochemistry, it was also possible to explain the basis for the changed activity at a .

Jun 20, 2022

Scientists Used CRISPR to Trace Every Human Gene to Its Function

Posted by in categories: biotech/medical, genetics

The vision didn’t exactly work out. DNA sequences, while capturing extremely powerful genetic information, don’t necessarily translate to indicating how our bodies behave. Genes can turn on or off in different tissues depending on the cell’s need. Reading a DNA sequence for any gene is like parsing the base code of a cell’s internal program. There’s the raw genetic code—the genotype—which determines the phenotype, life’s software that controls how cells behave. Linking the two has taken decades of painstaking experiments, slowly building up an encyclopedia of knowledge that decodes the influence of a gene on biological functions.

A new study ramped up the effort. Led by Drs. Thomas Norman and Jonathan Weissman at Memorial Sloan Kettering Cancer Center in New York and the University of California, San Francisco, respectively, the team built a Rosetta Stone for translating genotypes to phenotypes, with the help of CRISPR.

They went big. Changing gene expression in over 2.5 million human cells, the tech, dubbed Perturb-seq, comprehensively mapped how each genetic perturbation alters the cell. The technology centers around a sort of CRISPR on steroids. Once introduced into cells, Perturb-seq rapidly changes thousands of genes—a brutal shakeup at the genomic scale to see how single cells respond.

Jun 20, 2022

Rune Labs secures FDA clearance to use Apple Watch to track Parkinson’s symptoms

Posted by in categories: biotech/medical, genetics, life extension, neuroscience, wearables

Rune Labs, a precision neurology company, has announced its StrivePD software ecosystem for Parkinson’s disease has been granted 510(k) clearance by the US Food and Drug Administration (FDA) to collect patient symptom data through measurements made by Apple Watch.

By combining powerful wearable technology and self-reported symptom information with brain imaging, electrophysiology, genetic and other clinical data, StrivePD enables a data-driven approach to care management and clinical trial design for Parkinson’s.

Longevity. Technology: With this clearance, the Rune Labs’ StrivePD app enables precision clinical care and trial participation for tens of thousands of Parkinson’s patients who already use these devices in their daily lives.

Jun 19, 2022

Liz Parrish at the Digital Enterprise Show 2022 in Málaga, Spain

Posted by in categories: biotech/medical, genetics, life extension, neuroscience

Enjoy the talk given by Liz Parrish on June 14, 2022 during the Digital Enterprise Show 2022. The event took place from June 14th to the 16th in Málaga, Spain.


BioViva Science is using bioinformatics to improve gene therapies to enhance healthy human longevity and combat age-related diseases like Alzheimer’s, diabetes, cancer, and heart disease. TimeKeeper™ is an epigenetic clock and the BioViva BioVault™ is a bioinformatics database for researchers and consumers.

Jun 19, 2022

Gene Therapy for Interstellar Travel

Posted by in categories: biotech/medical, genetics, life extension

Space is not a hospitable place. Radiation, zero gravity, and the vast distances between stops make interstellar travel look like a pipe dream right now, but they can be made more manageable with gene therapy. Along with obvious choices like follistatin to fight the loss of muscle mass, anti-aging gene therapies for telomerase induction, and Klotho expression can promote overall health. Keeping the crew healthy is essential when the nearest hospital could be billions of miles away.

In a statement to Astronomy Magazine, Dr João Pedro de Magalhães said “this roadmap sets the stage for enhancing human biology beyond our natural limits in ways that will confer not only longevity and disease resistance but will be essential for future space exploration.” There’s a big overlap between the genes needed to keep people healthy on earth and the genes needed to keep them safe in space.

There are a vast array of genes that will likely prove helpful to making long space voyages safe and comfortable. A vector, like BioViva’s CMV, will be needed to deliver the substantial genetic payloads astronauts will want to take with them into space.

Jun 18, 2022

Scientists cut the risk of organ transplant rejections

Posted by in categories: biotech/medical, genetics

A new approach to the organ transplant procedure devised by researchers at Stanford University and their collaborators minimizes the risk of organ rejection, ScienceAlert reported. Moreover, the technique does not require the organ recipient to remain immune-compromised after the procedure.

The first successful solid organ transplant was that of a kidney in 1954, and the world has not looked back. Modern medicine is now able to transplant eyes, liver, kidneys as well as heart, procedures which are saving lives the world over. To tide over the shortages of organs that are available for transplantation, companies are even rearing genetically modified pigs to be safely transplanted in the future.

Continue reading “Scientists cut the risk of organ transplant rejections” »

Jun 17, 2022

Krabbe Disease Successfully Treated With Gene Therapy in Preclinical Animal Model

Posted by in categories: biotech/medical, genetics, neuroscience

Circa 2020


Gene therapy shows promise for clinical benefit in demyelinating, neurodegenerative disease.

Krabbe disease is an aggressive, incurable pediatric neurodegenerative disease caused by mutations in the galactosylceramidase (GALC) gene. Deficiency of the GALC protein activity leads to cytotoxic accumulation of a cellular metabolite called psychosine, which compromises normal turnover of myelin in the central and peripheral nervous system (CNS, PNS). The ensuing damage leads to progressive disease, including paralysis, loss of sensory functions and death, in the developing infant. The incidence of Krabbe disease is estimated at 1 in 100,000 live births.

Continue reading “Krabbe Disease Successfully Treated With Gene Therapy in Preclinical Animal Model” »

Jun 16, 2022

Genetic discovery could spell mosquitoes’ death knell

Posted by in categories: biotech/medical, education, genetics

A UC Riverside genetic discovery could turn disease-carrying mosquitoes into insect Peter Pans, preventing them from ever maturing or multiplying.

In 2018, UCR entomologist Naoki Yamanaka found, contrary to accepted scientific wisdom, that an important steroid hormone requires to enter or exit fruit fly cells. The hormone, ecdysone, is called the “molting hormone.” Without it, flies will never mature, or reproduce.

Before his discovery, textbooks taught that ecdysone travels freely across cell membranes, slipping past them with ease. “We now know that’s not true,” Yamanaka said.

Jun 16, 2022

DNA evolves at different rates, depending on chromosome structure

Posted by in categories: biotech/medical, chemistry, evolution, genetics

The structure of how DNA is stored in archaea makes a significant difference to how quickly it evolves, according to a new study by Indiana University researchers.

The study, led by molecular biologist Stephen Bell, Distinguished Professor and chair of the College of Arts and Sciences’ Department of Molecular and Cellular Biochemistry at Indiana University (IU) Bloomington, was recently published in Nature Microbiology. Its findings have the potential to impact research on the treatment of genetic diseases such as cancer.

“The most exciting thing we revealed is the idea that the shape of a DNA molecule can affect its ability to change,” Bell said. “In the early 20th century, modernist architecture had the idea that the form of a building should follow its function. But what we’re seeing in these organisms is that over time, form is actually affecting . How DNA is structured can change it, creating an evolutionary feedback loop.”