Oct 12, 2022
Emulating impossible ‘unipolar’ laser pulses paves the way for processing quantum information
Posted by Dan Breeden in categories: cybercrime/malcode, encryption, quantum physics
A laser pulse that sidesteps the inherent symmetry of light waves could manipulate quantum information, potentially bringing us closer to room temperature quantum computing.
The study, led by researchers at the University of Regensburg and the University of Michigan, could also accelerate conventional computing.
Quantum computing has the potential to accelerate solutions to problems that need to explore many variables at the same time, including drug discovery, weather prediction and encryption for cybersecurity. Conventional computer bits encode either a 1 or 0, but quantum bits, or qubits, can encode both at the same time. This essentially enables quantum computers to work through multiple scenarios simultaneously, rather than exploring them one after the other. However, these mixed states don’t last long, so the information processing must be faster than electronic circuits can muster.