БЛОГ

Archive for the ‘supercomputing’ category: Page 64

May 2, 2020

Could Photonic Chips Outpace the Fastest Supercomputers?

Posted by in categories: encryption, quantum physics, robotics/AI, supercomputing

There’s been a lot of talk about quantum computers being able to solve far more complex problems than conventional supercomputers. The authors of a new paper say they’re on the pat h to showing an optical computer c an do so, too.

The idea of using light to carry out computing has a long pedigree, and it has gained traction in recent years with the advent of silicon photonics, which makes it possible to build optical circuits using the same underlying technology used for electronics. The technology s hows particular promise for accelerating deep learning, and is being actively pursued by Intel and a number of startups.

Now Chinese researchers have put a photonic chip t o work tackling a fiendishly complex computer science challenge called the s ubset sum problem in a paper in Science Advances. It ha s some potential applications in cryptography and resource allocation, but primarily it’s used as a benchmark to test the limits of computing.

May 2, 2020

Transhumanism 2.0 (Full Documentary)

Posted by in categories: cybercrime/malcode, cyborgs, education, Elon Musk, genetics, neuroscience, quantum physics, robotics/AI, supercomputing, transhumanism

TABLE OF CONTENTS —————
:00–15:11 : Introduction
:11–36:12 CHAPTER 1: POSTHUMANISM
a. Neurotechnology b. Neurophilosophy c. Teilhard de Chardin and the Noosphere.

—————————————————————————————–
POSTHUMAN TECHNOLOGY
—————————————————————————————–

Continue reading “Transhumanism 2.0 (Full Documentary)” »

Apr 28, 2020

World’s first 3D simulations of superluminous supernovae

Posted by in categories: cosmology, physics, supercomputing

For most of the 20th century, astronomers have scoured the skies for supernovae—the explosive deaths of massive stars—and their remnants in search of clues about the progenitor, the mechanisms that caused it to explode, and the heavy elements created in the process. In fact, these events create most of the cosmic elements that go on to form new stars, galaxies, and life.

Because no one can actually see a supernova up close, researchers rely on to give them insights into the physics that ignites and drives the event. Now for the first time ever, an international team of astrophysicists simulated the three-dimensional (3D) physics of superluminous supernovae—which are about a hundred times more luminous than typical supernovae. They achieved this milestone using Lawrence Berkeley National Laboratory’s (Berkeley Lab’s) CASTRO code and supercomputers at the National Energy Research Scientific Computing Center (NERSC). A paper describing their work was published in Astrophysical Journal.

Astronomers have found that these superluminous events occur when a magnetar—the rapidly spinning corpse of a massive star whose magnetic field is trillions of times stronger than Earth’s—is in the center of a young supernova. Radiation released by the magnetar is what amplifies the supernova’s luminosity. But to understand how this happens, researchers need multidimensional simulations.

Apr 17, 2020

Artificial Intelligence as a Godlike Tool for Experimentation

Posted by in categories: habitats, robotics/AI, supercomputing

When we think of the interaction between mankind and any type of artificial intelligence in mythology, literature, and pop culture, the outcomes are always negative for humanity, if not apocalyptic. In Greek mythology, the blacksmith god Hephaestus created automatons who served as his attendants, and one of them, Pandora, unleashed all the evils into the world. Mary Shelley wrote the character named the Monster in her 1818 novel Frankenstein, as the product of the delusions of grandeur of a scientist named Victor Frankenstein. In pop culture, the most notable cases of a once-benign piece of technology running amok is the supercomputer Hal in 2001 Space Odyssey and intelligent machines overthrowing mankind in The Matrix. Traditionally, our stories regarding the god-like creative impulse of man bring about something that will overthrow the creators themselves.

The artificial intelligence-powered art exhibition Forging the Gods, curated by Julia Kaganskiy currently on view at Transfer Gallery attempts to portray the interaction between humans and machines in a more nuanced manner, showcasing how this relationship already permeates our everyday lives. The exhibition also shows how this relation is, indeed, fully reflective of the human experience — meaning that machines are no more or less evil than we actually are.

Lauren McCarthy, with her works “LAUREN” (2017) and its follow-up “SOMEONE” (2019) riffs on the trends of smart homes: in the former, she installs and controls remote-controlled networked devices in the homes of some volunteers and plays a human version of Alexa, reasoning that she will be better than Amazon’s virtual assistant because, being a human, she can anticipate people’s needs. The follow-up SOMEONE was originally a live media performance consisting of a four-channel video installation (made to look like a booth one can find at The Wing) where gallery-goers would play human versions of Alexa themselves in the homes of some volunteers, who would have to call for “SOMEONE” in case they needed something from their smart-controlled devices. Unfortunately, what we see at Forging The Gods is the recorded footage of the original run of the performance, so we have to forgo playing God by, say, making someone’s lighting system annoyingly flicker on and off.

Apr 15, 2020

Folding@home is now 15 times faster than any current supercomputer

Posted by in categories: biotech/medical, supercomputing

By itself, your PC is not anywhere near as powerful as a supercomputer. Don’t worry, neither is mine, or anyone else’s I know. But while none of use have the computing resources to single-handedly unlock the secrets of a virus, there is strength in numbers. As such, the collective efforts of PC users far and wide have propelled the Folding@home project to crunch data at a pace that is 15 times faster than IBM’s Summit, the top supercomputer in the world.

The developers of Folding@home have been posting periodic updates on Twitter, and according to the latest one, the distributed computing project is currently cranking out around 2.4 exaFLOPs of computational power.

With our collective power, we are now at ~2.4 exaFLOPS (faster than the top 500 supercomputers combined)! We complement supercomputers like IBM Summit, which runs short calculations using 1000s of GPUs at once, by spreading longer calculations around the world in smaller chunks! pic.twitter.com/fdUaXOcdFJ April 13, 2020

Apr 14, 2020

Supercomputing future wind power rise

Posted by in categories: energy, supercomputing, sustainability

Wind power surged worldwide in 2019, but will it sustain? More than 340,000 wind turbines generated over 591 gigawatts globally. In the U.S., wind powered the equivalent of 32 million homes and sustained 500 U.S. factories. What’s more, in 2019 wind power grew by 19 percent, thanks to both booming offshore and onshore projects in the U.S. and China.

A study by Cornell University researchers used supercomputers to look into the future of how to make an even bigger jump in in the U.S.

“This research is the first detailed study designed to develop scenarios for how wind energy can expand from the current levels of seven percent of U.S. electricity supply to achieve the 20 percent by 2030 goal outlined by the U.S. Department of Energy National Renewable Energy Laboratory (NREL) in 2014,” said study co-author Sara C. Pryor, a professor in the Department of Earth and Atmospheric Studies, Cornell University. Pryor and co-authors published the study in Nature Scientific Reports, February 2020.

Apr 3, 2020

D-Wave gives anyone working on responses to the COVID-19 free cloud access to its quantum computers

Posted by in categories: engineering, quantum physics, robotics/AI, supercomputing

D-Wave, the Canadian quantum computing company, today announced that it is giving anyone who is working on responses to the COVID-19 free access to its Leap 2 quantum computing cloud service. The offer isn’t only valid to those focusing on new drugs but open to any research or team working on any aspect of how to solve the current crisis, be that logistics, modeling the spread of the virus or working on novel diagnostics.

One thing that makes the D-Wave program unique is that the company also managed to pull in a number of partners that are already working with it on other projects. These include Volkswagen, DENSO, Jülich Supercomputing Centre, MDR, Menten AI, Sigma-i Tohoku University, Ludwig Maximilian University and OTI Lumionics. These partners will provide engineering expertise to teams that are using Leap 2 for developing solutions to the Covid-19 crisis.

As D-Wave CEO Alan Baratz told me, this project started taking shape about a week and a half ago. In our conversation, he stressed that teams working with Leap 2 will get a commercial license, so there is no need to open source their solutions and won’t have a one-minute per month limit, which are typically the standard restrictions for using D-Wave’s cloud service.

Apr 1, 2020

D-Wave Opens Quantum-Computing Resources to Coronavirus Research

Posted by in categories: biotech/medical, business, quantum physics, robotics/AI, supercomputing

Quantum-computing vendor D-Wave Systems Inc. said Tuesday it is giving researchers and companies studying the novel coronavirus free access to its early-stage, experimental machines over the cloud.

Canadian firm D-Wave is among several technology companies providing free advanced computing resources to researchers working to combat the global pandemic. International Business Machines Corp., for example, in March started offering free remote access to two of the world’s most powerful supercomputers.

D-Wave has assembled a team of experts from about a dozen universities and companies including Volkswagen AG, Denso Corp. and startup Menten AI who are familiar with its quantum-computing services to help interested researchers program the computers.

Mar 24, 2020

World’s fastest supercomputer finds potential drug compounds for COVID-19

Posted by in categories: biotech/medical, supercomputing

Researchers at Oak Ridge National Laboratory (ORNL) have used Summit, the world’s fastest and most powerful supercomputer, to identify 77 small-molecule drug compounds that might warrant further study in the fight against the SARS-CoV-2 coronavirus.

The team performed simulations of more than 8,000 compounds to screen for those that are most likely to bind to the main “spike” protein of the coronavirus, rendering it unable to infect host cells. They ranked compounds of interest that could have value in experimental studies of the virus.

Continue reading “World’s fastest supercomputer finds potential drug compounds for COVID-19” »

Mar 20, 2020

World’s Fastest Supercomputer Finds 77 Potential COVID-19 Treatments

Posted by in categories: biotech/medical, supercomputing

IBM’s Summit is currently the fastest supercomputer in the world.

Page 64 of 97First6162636465666768Last